
International Journal of Graph Computing
Vol. 1, No. 1 (2020) 39-69
c© KS Press, Institute for Semantic Computing Foundation
DOI: 10.35708/GC1868-126723

A Framework for Exploration and Visualization of SPARQL Endpoint 
Information

Maria Krommyda and Verena Kantere

National Technological University of Athens, Athens, Greece
{mariakr, verena}@dblab.ece.ntua.gr

Received (11/12/2019)
Revised (01/29/2020)
Accepted (02/28/2020)

Abstract. Widely accepted standards, such as the Resource Descrip-
tion Framework, have provided uni�ed ways for data provision aiming to
facilitate the exchange of information between machines. This informa-
tion became of interest to a wider audience due to its volume and variety
but the available formats are posing signi�cant challenges to users with
limited knowledge of the Semantic Web. The SPARQL query language
alleviates this barrier by facilitating the exploration of this information
and many data providers have created dedicated SPARQL endpoints
for their data. Many e�orts have been dedicated to the development
of systems that will provide access and support the exploration of these
endpoints in a semantically correct and user friendly way. The main chal-
lenge of such approaches is the diversity of the information contained in
the endpoints, which renders holistic or schema speci�c solutions obso-
lete. We present here an integrated platform that supports the users to
the querying, exploration and visualization of information contained in
SPARQL endpoints. The platform handles each query result indepen-
dently based only on its characteristics, o�ering an endpoint and data
schema agnostic solution. This is achieved through a Decision Support
System, developed based on a knowledge base containing information
experimentally collected from many endpoints, that allows us to provide
case-speci�c visualization strategies for SPARQL query results based ex-
clusively on features extracted from the result.

Keywords: SPARQL; Complex queries; endpoints; visualization; exploration;
Decision Support Model.

1 Introduction

It was only twenty years ago when Tim Berners-Lee initiated the idea about the
Semantic Web [33]. Its growth and expansion the following years was exponential



40 M. Krommyda, V. Kantere

as more and more data providers understood the importance of a common way
to share information for their development and sustainability. A slow start, hin-
dered by the need to manually annotate semantic data, was soon followed by a
rapid acceleration when the process was automated. Encyclopedias, medical and
scienti�c databases, large-scale projects such as Bio2RDF, the British Museum,
the BBC Programmes and Music and the most prominent project Wikidata, the
large knowledge graph of Wikipedia, were soon part of the Semantic Web and
o�ered under the RDF format.

RDF is a data interchange model that aims to support the merging of infor-
mation from heterogeneous sources with di�erent schemas as well as the unob-
structed update of schemas as needed without requiring any modi�cation to the
consumers of the information. RDF takes advantage of the structure of the Web
and utilizes URIs to indicate relationships between entities. This data model pro-
vides the �exibility to merge structured and semi-structured schemas and share
them in a uniform way. What makes the RDF model so widely used is that it is
�exible and can be used to model information from heterogeneous sources. This
is also what makes it a challenge to explore and understand, as data expressed
in RDF is typically stored in large interconnected databases, without a homoge-
neous schema. Upon the increase of the volume of the information available on
the Web, the need for a uniform way that facilitates the accessibility, the dis-
covery and the understanding of the available information became prominent.
Since being released as an o�cial W3C recommendation in early 2008, SPARQL
has evolved into the major query language for the Semantic Web and the RDF
model. It has become the main standard for querying semantic data stores and is
a key technology of the open data movement. SPARQL is supported by nearly all
modern RDF based storage systems and is widely used in enterprise and public
web contexts. There are two main challenges regarding the use of the SPARQL
query language for the exploration of information. To begin with, novice users
of SPARQL can easily perform simple and basic queries but require extensive
training to utilize all the exploration capabilities of the language due to the wide
range of functionalities. This is often deterring or disengaging for users that are
not very familiar with the Semantic Web. In addition, the provided data rarely
comply with strict models or have speci�c structure. Most users however are
familiar with strict data models and relational databases as well as results that
are complete and have speci�c structure. The diversity and �exibility of the
SPARQL results is often hindering to the compilation of meaningful queries and
the understanding of the information.

A SPARQL endpoint enables users, either humans or machines, to query a
knowledge base using the SPARQL language. Results are typically returned in
machine-processable formats, mainly SPARQL Query Results XML or JSON
Format. Informally, a SPARQL endpoint is mostly conceived as a machine-
friendly interface over a knowledge database. Accessing the information, forming
the proper queries, understanding and representing the retrieved information is
the responsibility of the user of the endpoint and not of the provider. As the num-
ber of the available endpoints increases, information for many di�erent research



A framework for SPARQL endpoint . . . 41

areas is available, which is of interest to a wider audience, especially scientists
and researchers, with limited knowledge of the Semantic Web.

To address the needs of such users a few endpoints were updated to o�er
access to the information through search engines and present the information
in structured ways. These e�orts however are limited to a very small number
of the available endpoints and o�er few, if any, exploration and visualization
functionalities. The structured formats used, such as lists and tables, present
the information in a human-readable format but without showing relations and
connections between entities. Tools and applications that aim to support the
querying, exploration and visualization of SPARQL endpoints are faced with
many challenges. These include:

Querying support. Data in a SPARQL endpoints are fully accessible only for
experts in the Semantic Web who are accustomed to forming complex SPARQL
queries. Even then, navigating and exploring an unfamiliar SPARQL endpoint
by hand can be quite laborious. For novice users only super�cial exploration is
possible without further support. Many tools, such as [29,72,66], are trying to
provide the users with the needed support to explore and query the information,
either by completely hiding the underlying SPARQL queries or o�ering graphical
support to the compilation of the queries.

Content presentation. RDF is designed to facilitate machine interpretability
of information and does not de�ne a visual presentation model since human read-
ability is not one of its stated goals. Presenting content primarily intended for
machine consumption in a human readable and understandable way is very chal-
lenging. Most SPARQL endpoints provide the information in tables that vary
on the number of columns based on the type of query. While such representa-
tions are intuitively close to what the average users, familiar with the relational
schemas, expect, they are further from the nature of the RDF model, which is
the graphical representation of information with connections between entities.
E�orts to provide the information through graph-like visualizations however pose
many challenges. Most approaches limit the usage to speci�c RDF vocabular-
ies [49,60], SPARQL query types [67], domain-speci�c analysis [55] or already
de�ned attributes [46].

Schema identi�cation. The underlying data schema is not always available, or
easily extracted. As a result, �ltering and further querying is not always obvious
or intuitive, based on the user expertise and the complexity of the schema next
steps for the retrieval of the information may not be straightforward. Many tools
[70,40,74] aim to extract the underlying schema, in order to support the explo-
ration of the information. Such approaches however are not always successful as
they fail for unstructured or overly complex schemas and only o�er an overall
estimation regarding the underlying schema.

Motivating Example. One of the most characteristic examples of infor-
mation spaces that are challenging to explore and visualize is dictionary-like
datasets. The information contained in them is incomplete, highly connected
due to aliases and synonyms, domain-speci�c or represented in an unstructured
way depending on the source of the information. Such datasets are also very valu-



42 M. Krommyda, V. Kantere

able as they are utilized by universities, research institutes, public institutions
and companies for knowledge organization. Also the format and characteristics
of these datasets are important for research in information science as well as in
the area of Linked Data and Semantic Web technologies.

Such an example of SPARQL endpoint that is very challenging to explore is
the Standard-Thesaurus Wirtschaft (STW) Thesaurus for Economics [54]. This
thesaurus provides 6.000 subject headings in two languages, English and Ger-
man and it is considered the world's most comprehensive bilingual thesaurus for
representing and searching for economics-related content. It utilizes more than
20,000 synonyms to cover not only all economics-related subject areas but also
many related subject �elds. The STW is published and continuously further
developed by the Leibniz-Informationszentrum Wirtschaft [71], the German Na-
tional Library of Economics, according to the latest changes in the economic
terminology.

Due to the importance of the information that it represents the endpoint is
of interest to a wide range of users with di�erent needs. Economists and users
less familiar with the Semantic Web focus on locating terms of interest, study
their relationships with other terms and vocabularies and �nding the translation
of the terms between the two languages. Exploration systems should provide
simple access to the information through keyword search, support the execution
of exploratory queries through a user-friendly interface that requires from the
user minimum input or knowledge of the Semantic Web, allow the retrieval of
information related to one speci�c term based on its relationships with others
and support the representation of the information in an intuitive way as graph.

Companies and institutions are more interested in exploring in-depth the
dataset, discovering statistics regarding connections between synonyms from dif-
ferent subject �elds and retrieving answers to complex queries. The users with
experience of the Semantic Web should be able to write their own queries and
get the proper visualizations.

Contributions.We present here a complete solution that supports both ex-
pert and novice users with querying SPARQL endpoints, exploring and visualiz-
ing the results in a dynamic way. Aiming to create a system that will overcome
the challenges mentioned above we developed a client-server architecture that
can o�ers:

Schema agnostic. Our system is carefully designed to handle any endpoint,
without any information about the underlying schema, without any compromise
on the user experience.

Decision Support System. We have developed a DSS that makes the decision
regarding the visualization type that should be used for a query result. The
DSS can provide speci�c parameters and layouts for queries that are to be vi-
sualized as graphs and speci�c charts for queries that contain less variables and
aggregated information.

Knowledge database & Experimental analysis.We have accessed and analysed
multiple SPARQL endpoints to collect information regarding possible query re-
sults. This information is used by the DSS to de�ne the visualization parameters



A framework for SPARQL endpoint . . . 43

of the graphs. We have also performed a detailed analysis of the results, evalu-
ating the range of parameters for the endpoints and associating them with the
corresponding visualization parameters.

Query-speci�c visualization rules. We have studied the methodologies for
choosing the right charts for the right data and we have utilized them to create
proper rules that will match query types with the proper visualization chart. We
provide case-speci�c visualizations for query results, based only on information
and features extracted from them.

Integrated platform. In order to showcase the �exibility and the robustness of
this approach, we developed an integrated platform that allows the users to query
a SPARQL endpoint of their preference, either by writing their own query or by
using a supportive form or by simply running a keyword search, and visualize the
result based on its type and characteristics. Furthermore, the platform allows the
user to �lter the visualized information dynamically by exploiting the semantic
annotations of the data and further explore the dataset by providing support
and hints towards the next exploration steps.

The structure of this paper is as follows: In Section II, we present the system
architecture for the exploration and visualization of SPARQL endpoint query
results. In Section III, we present the Decision Support System. In Section IV
we present the Integrated Platform. In Section V we present the review of the
related work. Finally, in Section VI, we present the experimental analysis of
SPARQL endpoints that was used for the creation of the knowledge database.

This paper is an extended version of the conference paper presented in Graph
Computing 2019 [56].

2 System Architecture

We present the system architecture in Figure 1. The system can be divided into
two main modules, the integrated platform and the Decision Support System
(DSS). The integrated platform is the client component, accessible by the user
and tasked with all the user-related interactions as well as the communication
with the SPARQL endpoint while the DSS is the server component accessible
through a dedicated interface. The integrated platform has three sub-modules,
the User Interface which is responsible for visualizing the query results and
supporting the user is locating and exploring the information of interest through
a series of functionalities, the Query processor which receives the SPARQL query
and queries in real time the selected endpoint and the Feature Extractor which
extracts the needed features from the result and forwards this information to
the DDS interface. The Decision Support System has three key sub-modules,
the Knowledge Database that contains the raw data needed to make a decision,
the Decision Model that has all the rules and logic of the decision making and the
DSS Interface that receives the extracted features from the integrated platform
and returns the decision of the DDS in the form of visualization parameters. We
present below the modules of the architecture in detail.



44 M. Krommyda, V. Kantere

Fig. 1. System Architecture

3 Decision Support System

A DSS is an information system that supports decision-making activities. DSSs
are designed to support the operational planning and help people make decisions
about problems. Their main contribution is that they can support problems that
are rapidly changing and not easily speci�ed in advance. A DSS can be built in
any knowledge domain as long as enough information can be collected to sup-
port the decision model. A DSS is designed to combine relevant information
provided from a knowledge base and models to solve problems and make deci-
sions. There are three key components to a DSS architecture. The knowledge
database that should contain data presenting the real word and serve as the
basis for the system. The model, the core logic of the system where based on
the available information all the decisions are made and the interface where the
current problem/situation is given as an input and a decision is returned as an
output.

We believe that a DSS can be very useful in the context of the visualization
of SPARQL query results. To begin with, the problem of e�ectively visualizing
a speci�c query result is within the core problems that the DSSs can handle.
This is due to the fact that it is a problem that cannot be speci�ed in advance.
Two query results are expected to present high diversity regarding their charac-
teristics even for a single endpoint. A DSS provides the �exibility, through the
modeling process, to have the needed rules to support such diversity.

Example 1. An indicative example for the STW Thesaurus for Economics can
be the diversity between a query from a data scientist interested in the number
of appearances of each predicates available in the dataset and a query from an
economist interested in retrieving all the terms containing the keyword Economy
and their description. In the �rst case, the result is showing the distribution of
the 100% of the predicates and should be represented as a pie chart while in the
second case the result is 121 triples containing terms and their description which
should be represented as a graph.

In addition, modeling data to visualization types using the proper parameters is
an intuitive process that follows speci�c empirical rules when the characteristics
and format of the data are known. Last but not least, dynamically o�ering case-
speci�c visualization parameters for each query result allows the exploration
of any SPARQL endpoint without requiring any knowledge for the underlying
schema or enforcing any limitation to the exploration.



A framework for SPARQL endpoint . . . 45

Fig. 2. The tree showing the decision making process for the model

We have developed a decision model that proposes two visualization cate-
gories, graphs for queries results containing triplets of information without a
time variable and charts for query results containing one or two variables and
aggregation functions. In order to determine the parameters that are needed for
the graph layout of a query result we have developed a knowledge database with
information from many available endpoints. The knowledge database allows us
to determine if a graph is highly connected, if it contains a lot of descriptive
information or follows a speci�c pattern allowing as to choose the right layout
algorithm and parameters. Regarding the choice of the appropriate chart we have
created a series of rules as part of the decision model that interpreter known data
visualization rules to speci�c query types. We present below the implementation
details of the three sub-modules of the DSS.

3.1 Knowledge Database

According to studies that were carried out on logs of endpoints, aiming to study
patterns in the queries and the users of the endpoints [34,59,64], the majority
of the queries are SELECT queries for triples without aggregation. This means
that the most important part of the visualization that we need to properly
parameterize are the graphs. In order to achieve that we need to know what are
the expected range for the characteristics of such queries. We have accessed and
analyzed multiple SPARQL endpoints to collect information regarding the result
size limit, the total number of unique predicates, the total number of unique
entities, the most/least connected entities, the most/least used predicate, the
min/max string length for entities and predicates and the average node degree.
We present in Section 6 the details regarding the experimental methodology and
results. The collected information allows us to determine if the characteristics of
a result are within the expected limits, identify potential issues and choose the
right visualization parameters. The information collected is stored in a relational
database accessible by the decision model.



46 M. Krommyda, V. Kantere

3.2 Decision model

As presented in Figure 2, we have developed a deterministic decision tree that
identi�es the proper visualization type based on the query type and result char-
acteristics. Triplets of information containing no time information are visualized
as graphs. In Section 3.2, we present which features of the query result are exam-
ined and how they are utilized in de�ning the visualization parameters for the
graphs. Here, the information available in the knowledge database is used to sup-
port the process and provide the needed information regarding expected values.
In Section 3.2, we present the decision making process regarding the selection of
the right chart for query results with one, two variables or three variable, one of
them time related.

Graphs Graphs are used for all the query results that are in the form of
triplets and do not contain any time information. The presence of time is evalu-
ated based on the OWL-Time [25] ontology of temporal concepts which has been
created for describing the temporal properties of resources and is associated with
the http: // www. w3. org/ 2006/ time# namespace.

Graphs are dependent on many visualization parameters that can be adjusted
to accommodate a wide range of query results including the layout algorithm that
can be exploited to support the exploration of the results. Speci�c characteristics
of the data to be visualized, such as the node size, node degree and the overall size
directly a�ect choices regarding the overlapping percentage, the compactness and
the edge length of the visualization. In order to specify the graph visualization
parameters, the features of the query result are examined and evaluated based
on the information available at the knowledge database. The evaluation method
is presented here:

� Node size. In order to determine the size of the nodes, the average string
length of the labels available in the query result are examined. The value
is then compared with the information available at the knowledge database,
the minimum and maximum values of the label lengths of the endpoint.
Based on this comparison, the node size is determined.

� Node degree. Aiming to determine the density of the query result, the average
node degree is calculated. The value is then compared with the information
available at the knowledge database, the average value of the node degree
for the endpoint, and the result density is determined.

� Result size. The result size is compared to the maximum result size that the
endpoint is support. In the case that this is reached, an additional param-
eter is added to the provided response, to ensure that the user is noti�ed
accordingly.

� Edge length. Nodes that do not contain long textual descriptions are rela-
tively small in size and can be brought closer in the two-dimensional space.
The maximum edge length is proportional to the node size.

� Node overlaps. The selected node size determines the allowed percentage
of overlapping between nodes. As a rule of thumb, for larger nodes a higher
degree of overlapping is acceptable given that the user gets an understanding

http://www.w3.org/2006/time#


A framework for SPARQL endpoint . . . 47

of the information provided even without reading the complete information.
Based on this rule the overlapping percentage is proportional of the node
size.

� Edge crossing. Minimizing the number of edge crossings is very important for
the readability of the graph, the path navigation and the node exploration.
To accommodate that, special graph layouts are investigated and hierarchical
and tree-like graph layouts are prioritized. Also, the default graph layout
algorithm used if the query result does not comply to any speci�c structure,
which is described in detail below, is designed to minimize the edge crossing.

� Graph area. Minimizing the overall graph area is not considered priority
for the visualization. This is mainly due to the fact that the user interface
o�ers many functionalities that support the exploration and navigation of
the information, ensuring a user-friendly experience even when the graph is
more than a few screens in dimensions.

� Node distribution. Uniform spatial distribution of the nodes ensures that the
graph is easily explored and navigated. To this end, the minimum area that
the graph covers is calculated proportionally to the result and node size.

In the cases where the decision model has to provide visualization parameters for
a SPARQL endpoint that has not been examined before, meaning that it is not
included in the knowledge database, then the average values of all the endpoints
included in the knowledge databases are used instead. The url of the endpoint
is saved on the server and the endpoint is examined o�ine and included in the
knowledge database if possible.

As already discussed, identifying the most suitable graph layout algorithm
for the query result is key for the proper exploration of the information. Tree,
hierarchical, star and circuit graph structures are �rst examined and applied if
possible, in any other case the more generic solution of the force-directed layout
algorithm is chosen. Also, for query result that contain symmetries, it is very
important to respect and visualize them to ensure the comprehension of the
visualized information. In details:

� Tree or Hierarchical structure. In order to check if a directed graph, like
a query result, is a tree we need to examine all triplets of information as
follows. The �rst step is to locate the root node of the tree, a vertex with only
outgoing edges. In the cases where there is more than one vertex with only
outgoing edges or there is no such vertex then the triplets do not comply with
the tree structure. After locating the root node we do a Depth First Search
starting from it, if the search encounters the same vertex twice, indicating
that it can be reached from two di�erent paths, then the result does not
comply with the tree structure. If the search concludes with unexplored
vertices, then the graph is not connected and cannot therefore be a tree. If
the Depth First Search contains all the nodes only once then the triplets
comply with the tree structure and can be presented as such.

� Star layout. In order to identify a result that complies with the star layout
we examine the node degrees. If the minimum node degree equals 1, the
maximum node degree equals with resultsize − 1 and the average node



48 M. Krommyda, V. Kantere

degree equals 2 ∗ (resultsize − 1)/resultsize then the query result has one
central node and is presented using the star layout.

� Circuit layout. Similarly, the query result can be represented using the circuit
layout when the minimum, maximum and average node degree equals with
2.

� Planar graph. Planar are called graphs that can be presented in the two-
dimensional space without any edge crossing. We are not examining the
possibility of o�ering the query result using a planar visualization, taking into
account that there are many discussions about whether they o�er any visual
improvement over the non-planar visualization and the cost of computing if
a graph is planar or not.

� Force-directed graph layout. For query results that does not comply with any
of the above mentioned structures, we employ a generic yet robust algorithm
for the graph layout. Force-directed graph drawing algorithms position the
nodes of a graph in two-dimensional space trying to minimize edge length
and edge crossing. The idea is to assign forces among the edges and the nodes
and use them to minimize their energy. On one hand, spring-like attractive
forces based on Hooke's law are used between nodes that are connected with
an edge to bring the pair closer in space. On the other hand, repulsive forces
like those of electrically charged particles are used between all pairs of nodes,
no matter if they are connected or not. The balanced state of these forces,
ensure that the edges have uniform lengths and nodes that are not connected
are further apart in space.
Such algorithms have many bene�ts, as a result of the force balancing that
ensures speci�c features. To begin with, the result is of high quality, o�ering
uniform edge length, enforcing the spatial distribution of the nodes and em-
phasizing symmetries in the data. Also, it provides the needed �exibility as
the balanced state of the forces can easily parameterized, as an example in-
creasing the attractive forces brings the nodes closer in the two-dimensional
space, based on the speci�c characteristics of the query result. Finally, the
algorithm mimics the physical world providing an output that can be intu-
itively understood and accepted.

For example, for query results where the average string length is near the
maximum that we have encountered the potential issue it that few nodes con-
taining descriptive information will a�ect the overall dimensions of the nodes,
expanding the space occupied by the graph and making its exploration a chal-
lenge. So, in such cases, the allowed overlapping percentage is 30%, the maximum
allowed one and the node size is 150px, again the maximum one. This allows us
to show to the user the majority of the information in the nodes, but also keep
the overall size of the graph relatively small to allow the exploration of the con-
nections between nodes. Similarly, the query result for all the synonyms of the
term Author has result size four and a max node degree also four. This means
that this query result should be visualized using the star layout algorithm as
shown in Figure 3. In Figure 4 we present the exploratory query result for the
term http://www.w3.org/2004/02/skos/core#Collection, which has been visual-



A framework for SPARQL endpoint . . . 49

Fig. 3. Star graphical representation of the synonyms for the word 'Author'

Fig. 4. Tree-like representation of an exploration query

ized using a tree-like approach due to the fact that there was one node with no
incoming edges and no closed paths.

Charts Choosing the right chart for the right data is not a scienti�cally
de�ned task, it is based on intuition and takes into account the purpose of the
visualization and the audience that the visualization is addressing. Aiming to
provided a widely accepted set of rules, there are many studies that performed
experiments aiming to identify the most suitable visualization type to be used
based on the data format and content [68,73,41,53,57]. These studies have formed
a set of empirical data visualization guidelines for choosing the right chart for
the right data that are widely accepted. We have adopted these guidelines and
we have extended them and matched them with query types in order to create
speci�c decision rules for the model. We present here the de�ned rules, giving an
intuitive description of the data visualization guideline, emphasizing the features
of the query results that are important for each rule and concluding with the
query types associated with each visualization type.

Pie chart. We present �rst the pie chart as it is the only chart available
that can represent only one variable. Speci�cally, it is used to represent the dis-
tribution of the 100% of a value, when there is no time element and there are
at most 10 parts. If there are too many parts, or the percentage distribution is
unbalanced, having one category over 90% and many others sharing the remain-
ing 10%, then the visualization is not aesthetically appealing it is not displayed
to the user. This visualization type is ideal for queries that have an aggregation
with a group by clause over a variable without any �ltering, such as a having
clause. The visualization may include, based on the user selection, also the labels
of the categories represented by the percentages. This additional information is
included in the textual representation where tuples are color matched with the
chart.



50 M. Krommyda, V. Kantere

Fig. 5. Count the times each predicate appears

Example 2. As an example, a user interested in the times each predicate appears
at the STW Thesaurus dataset would expect the result to be visualized as a pie
chart. This is due to the fact that the query result represents the distribution
of all the predicates in the dataset, there is a limited number of predicates to
be visualized, only seven, provided by a group by query with an aggregation
without any �ltering. The visualization of this query result is shown in Figure
5, where the user has also chosen for the predicate labels to be included in the
result.

Bar charts. Bar charts serve two purposes, the monitoring of one variable
over the course of time or the quanti�cation of a value related with a classi�ca-
tion. Bar charts are preferred for small datasets, at most with 12 parts, like the
monthly total value on the income of a company. The decision model chooses
this chart when the extracted features indicate that the query result has only
two variables, one of them is a numerical variable and the other is either time-
related or descriptive, and the size of the result is less than 12. In contrast with
pie charts, bar charts are not aware of the total distribution of the variable that
they represent or if it an aggregated value. As an example, a bar chart can visu-
alize the average age of retirement for people in ten most stressful work �elds.

Example 3. Taking advantage of the skos-history version store which has been
created with di�erent versions of STW Thesaurus for Economics we can create
useful queries that show the changes between versions over time. As an example
we can retrieve the count of deprecated concepts between versions. The result
of this query has two variables, one is time-related and a size of 7, so it is
represented as a bar chart as shown in Figure 6.

Line charts. Line charts are complimentary to the bar charts, as they are
used to monitor the same datasets but when the size is more than 12. In detail,



A framework for SPARQL endpoint . . . 51

Fig. 6. Count of deprecated concepts between STW Thesaurus versions

Fig. 7. Count of new concepts inserted per STW Thesaurus version

line charts show the variation of one variable with a lot of values over the course
of time or the quanti�cation of a value when classi�ed over multiple classes. This
visualization type is chosen when the query result has two variables with one of
them numerical and the other either time related or descriptive and size more
than 12.

Example 4. Taking again advantage of the skos-history version store we can
retrieve the count of new concepts inserted per version. The result of this query
has two variables, one is time-related and a size of 10, so it is represented as a
line charts as shown in Figure 7.

Scatter-plot charts.We have discussed the cases of datasets with two vari-
ables that include either a time element or descriptive information, we present
here scatter-plot charts which are used for dataset that have two numerical val-
ues. They represent the information as spots over a grid-like area, where each
axis can have a di�erent scale to accommodate the minimum and maximum
values of the representing variable. This chart does not have a size limit given



52 M. Krommyda, V. Kantere

that its overall dimensions are proportionally larger to the size of each visualized
part. This visualization type is used for query results that contain exactly two
numerical variables without a time element.

Map charts. Map charts are used to represent time invariable spatial in-
formation. This visualization type is used for datasets that contain spatial in-
formation, either coordinates or region names. The displayed information may
be a numeric value, then a one-color visualization with gradient is used as the
quantitative indicator, or descriptive where a multi-color schema for the cate-
gories is adopted. This visualization type is used for query results that contain
spatial information. For uniformity reasons we categorize these queries as two-
variable ones, one variable for representing the displayed information and one
that provides the spatial element. Often, however, the spatial information may
be available as two variable, latitude and longitude in the result. In such cases
we merge the two variable in one pair of coordinates to facilitate their further
processing.

Area charts. Area charts are used to represent how parts of a whole change
over time. This visualization type is ideal for datasets that contain at least
three variables, one of them is time related. The chart shows the variation of
the variables and their comparison in each time stamp. It can be presented in
two versions, the stacked area chart where the distribution of the variables is not
examined and the 100% area chart where the variables represent the distribution
of the 100% of a value at any given time. This chart is used for queries that have
an aggregation along a group by clause over two variables, represented over
time. Here, the presence of �ltering functions is examined to ensure the use of
the proper area chart type.

Descriptive representation. The chart types presented above do not cover
all the possible cases for query results. In the case of a result with only one
variable a chart is created only when the query contains a group by clause with
any �ltering using a pie chart. In all the other cases the available information
is not su�cient to create any visualization. Also, in the case where the query
result has more than three attributes without any time element, the information
is displayed in a structured table and no visualization is provided, given that the
dataset in lacking the needed cohesion.

We have implemented the decision model as a Java application with strict
deterministic rules. The extracted features are mapped to the rules and the most
�tting visualization type is selected.

3.3 DSS interface

We have implemented the DSS interface as a standalone Tomcat application
that receives as input a JSON data object that contains the extracted features
regarding the query result. The features that are included in the data object
are such to support the choice of the visualization type independently of the
content of the query, the endpoint queried or the underlying schema. The features
included in the JSON object are:

� Number & type of variables: list of variable types



A framework for SPARQL endpoint . . . 53

� Time element: boolean
� Spatial element: boolean
� Result size: numerical
� Aggregation function: boolean
� Group by function: boolean
� Filtering function: boolean
� Average string length: numerical
� Min/Max/Average node degree: numerical
� Root node: boolean
� Depth First Search: list of nodes

4 Integrated Platform

4.1 User Interface

A key component of the integrated platform is the user interface. This component
is responsible for all the interactions with the user and allows the user to navi-
gate and explore the information in an e�cient and semantically meaningful way.
It supports the composition of queries, ensures the validity of the user queries,
presents to the user the retrieved information in dynamic and case-speci�c vi-
sualizations and allows the exploration of the information through �ltering and
isolation techniques. To achieve all the above a series of functionalities are pro-
vided through the user interface.

Query composition. The user interface o�ers two ways for a user to write a
SPARQL query. The �rst one is addressed to expert users, a single text box allows
the user to type in any query. The second way is addressed to less experienced
users that have only some basic knowledge and understanding of the SPARQL
language. Here, the user is guided through the query composition by a form that
has drop-down menus when applicable and requires minimal free text input from
the user.

Query validator. To further support the user in composing their queries we
have incorporated to the interface a query validator. After typing the query, the
user can ask to validate the query and any issues are highlighted and the proper
message with suggestions is shown. Even if the user chooses to submit the query
without validating it, the validation process is always triggered before sending
the query to the endpoint to avoid any invalid responses and error messages.

Overview of the query result. We present a text overview of the result
to help the user get acquainted with it before exploring it. The textual repre-
sentation of the query result is also used as a legend for the charts in case it is
required by their type. This way the user can easily understand the displayed
information by color matching the relevant text to the chart part. Furthermore,
for the graph visualization, an additional overview is produced by isolating the
most connected nodes, based on their node degrees, and visualizing them with
respect to the spatial placement in the graph. The overview is interactive, mean-
ing that the user can click on an area of the overview and the visualization panel
is centered to the corresponding part of the graph.



54 M. Krommyda, V. Kantere

Dynamic visualization. For large query results, or charts that are contain
a lot of information such as scatter-plots, the mapping of the query result to the
visualization part might not be obvious. For this reason, the query result visu-
alization is not presented as a static image but as a dynamic object, responsive
to user actions. This allows the user to select a part of the visualization and see
highlighted the corresponding result part or chose a result part and see how it
is depicted in the visualization.

Customizable �ltering functions. As it will be presented in Section 6,
only one in three endpoints enforces a query size limit and even in such cases it
can be as high as 100000. Recognizing that navigating through such large query
results can be ine�ective and disengaging, the system provides to the user a series
of �lterng capabilities that can be used to restricted the displayed information.
The interface enables the user to use one or multiple �ltering criteria at the same
time. A very characteristic example where this functionality is of great applica-
bility is when the query contains multiple categories of semantic information. For
example, when querying information about a speci�c terminology the result may
contain information in di�erent languages as well as synonyms and antonyms. A
user can apply the �ltering functions provided to display only results in English
and terms that are synonyms to the original term. A di�erent example would
be a user visualizing aggregated the average expenses of a company per month.
In this case, there might be a need to exclude from the visualization months
before a limit. It is worth noting that all the provided �ltering functions can
also be achieved through an updated SPARQL query. However, by �ltering the
already retrieved information at the interface we allow the user to explore di�er-
ent �ltering scenario in an interactive way, with a short response time and avoid
over-querying the SPARQL endpoint.

Keyword search. Another way designed to support the novice user in get-
ting started with the exploration of a SPARQL endpoint and locate information
of interest is through keyword search. The term is queried against the selected
endpoint and the query results are presented to the user following the same data
�ow as any other result set.

Path navigation. For results that are visualized as graphs, the user is able
to choose one node and follow all the paths of the graph that include this node,
while the rest of the information is hidden. This way, irrelevant information is
eliminated allowing the user to focus exclusively on the node and paths originat-
ing on it that are of interest. In contrast with most approaches in which a path
can be traversed on one direction only, in our system when a node is chosen, all
neighbors, either incoming or outgoing are visualized.

Sub-result isolation. The user can also choose to isolate a part of the result
query, to better exploit and navigate the information that is present there. In
order to make the isolation of the information user-friendly, the information to
be isolated is chosen either by selecting the relevant part of the visualization or
the text from the result overview.

Exploration support. Aiming to further support the novice user with the
exploration of the available information the visualized result is interactive and



A framework for SPARQL endpoint . . . 55

upon user actions suggests further queries. An indicative example is when a
user selects one speci�c result entity, then queries that retrieve its neighbors are
suggested.

4.2 Query processor

When a new query is submitted by the user a process is initiated by the inte-
grated platform. First the query is validated, if any syntactic issues are identi�ed,
the user in noti�ed and the query is not send to the endpoint until the user has
corrected it. The valid queries are asked in real time to the selected endpoint.
This approach is selected as it gives the integrated platform the �exibility to
connect with any endpoint and provide to the user real time information based
on the latest update. The alternative would be to duplicate the information of
all the endpoints users are interested in to a dedicated back-end. This approach
has main drawbacks as it is an expensive, time consuming process that would
incapacitate the role of the SPARQL endpoints to provide up-to-day data. Also
it would have a huge overhead to the back-end and threaten the sustainability
of the platform as there would be need for storage of Terabytes of data and
would delay the provision of information to the user in case he chose to visit an
endpoint never before encountered by the platform. While temporary unavail-
ability of the endpoint or poor performance may a�ect the user experience this
is evaluated as a rarer and minimal discomfort to the user when compared with
ensuring the �exibility and sustainability of our approach. The query result is
then forwarded to the feature extractor.

4.3 Feature Extractor

The Extractor receives the query and the query result and extracts all the infor-
mation needed for the DSS. This is properly formatted in a custom JSON object
and forwarded to the DSS interface.

5 Related work

Visualisation tools The Tabulator [32] project is an attempt to demonstrate and
utilize the power of linked RDF data with a user-friendly Semantic Web browser
that is able to recognize and follow RDF links to other RDF resources based
on the user's exploration and analysis. It is a generic browser for linked data
on the web without the expectation of providing as intuitive an interface as a
domain-speci�c application but aiming to provide the sort of common user inter-
face tools used in such applications, and to allow domain-speci�c functionality
to be loaded transparently from the web and be instantly applicable to any new
domain of information. The Linked Data Query Wizard [50] is a web-based tool
for displaying, accessing, �ltering, exploring, and navigating Linked Data stored
in SPARQL endpoints. The main innovation of the interface is that it turns the
graph structure of Linked Data into a tabular interface and provides easy-to-use
interaction possibilities by using metaphors and techniques from current search
engines and spreadsheet applications that regular web users are already familiar
with. Linked Data Visualization Model (LDVM) [36,37] allows to dynamically



56 M. Krommyda, V. Kantere

connect data with visualizations. In order to achieve such �exibility and a high
degree of automation the LDVM is based on a visualization work�ow incorporat-
ing analytical extraction and visual abstraction steps. Each of the visualization
work�ow steps comprises a number of transformation operators, which can be
de�ned in a declarative way. As a result, the LDVM balances between �exibility
of visualization options and e�ciency of implementation or con�guration. This
has been expanded [49], to support the visualization of data provided using the
RDF Data Cube Vocabulary.

Visualbox [42] is a system that makes it easier for non-programmers to create
web visualizations based on Linked Data. Visualbox provides a uni�ed environ-
ment that supports the whole process of creating a visualization based on a
SPARQL query. It runs a query on the server and provides a useful caching
mechanism that allow users to visualize the data even if an endpoint is down or
unresponsive. gFacet [48] is a browsing approach that supports the exploration
of the Web of data by combining graph-based visualization with faceted �ltering
functionalities. The graph-based visualization facilitates a comprehensible inte-
gration of di�erent domains; the use of facets supports a controlled �ltering of
information. With gFacet, users are enabled to browse the Web of data e�ciently
and to retrieve information from di�erent user-de�ned perspectives. Sgvizler [67]
is a small JavaScript wrapper for visualization of SPARQL results sets. It inte-
grates well with HTML web pages by letting the user specify SPARQL SELECT
queries directly into designated HTML elements, which are rendered to contain
the speci�ed visualization type on page load or on function call. Sgvizler sup-
ports a vast number of visualization types, most notably all of the major charts
available in the Google Chart Tools, but also by allowing users to easily modify
and extend the set of rendering functions.

Facet Graphs [46] allows humans to access information contained in the Se-
mantic Web according to its semantics and thus to leverage the speci�c charac-
teristic of this Web. To avoid the ambiguity of natural language queries, users
only select already de�ned attributes organized in facets to build their search
queries. The facets are represented as nodes in a graph visualization and can
be interactively added and removed by the users in order to produce individual
search interfaces. This provides the possibility to generate interfaces in arbitrary
complexities and access arbitrary domains. Explorator [38] is an open-source
exploratory search tool for RDF graphs, implemented in a direct manipulation
interface metaphor. It implements a custom model of operations, and also pro-
vides a Query-by-example interface. Additionally, it provides faceted navigation
over any set obtained during the operations in the model that are exposed in
the interface. It can be used to explore both a SPARQL endpoint as well as an
RDF graph in the same way as �traditional" RDF browsers.

CubeViz [60] is a �exible exploration and visualization platform for statisti-
cal data represented adhering to the RDF Data Cube vocabulary. If statistical
data is provided adhering to the Data Cube vocabulary, CubeViz exhibits a
faceted browsing widget allowing to interactively �lter observations to be visu-
alized in charts. Based on the selected structural part, CubeViz o�ers suitable



A framework for SPARQL endpoint . . . 57

chart types and options for con�guring the visualization by users. By employ-
ing advanced introspection, analysis and visualization bootstrapping techniques
CubeViz hides the schema complexity of the encoded data in order to support
a user-friendly exploration experience. Timely YAGO [69] enhances facts ex-
tracted from Wikipedia with temporal validity information. Temporal facts are
extracted from Wikipedia infoboxes and lists in articles. These facts serve as the
backbone of a temporal ontology and are used for bootstrapping the extraction
of temporal facts from free text in our ongoing project. Payola [55] is a frame-
work for Linked Data analysis and visualization. It provides end users with a
tool enabling them to analyze Linked Data in a user-friendly way and without
knowledge of SPARQL query language, through domain-speci�c analysis and
reusable visualization plugins. D3SPARQL [52] is an open source library which
can be embedded in any Web page, performs a SPARQL query via AJAX call,
transforms the result and visualizes data with the help of D3.js library.

PowerAqua [58] is an ontology-based Question Answering system that is able
to answer queries by locating and integrating information, which can be mas-
sively distributed across heterogeneous semantic resources. It also performs a
deep exploitation of the available semantic information, providing query disam-
biguation, as well as knowledge fusion and ranking mechanisms to successfully
elicit the most accurate answers to user queries. RelFinder [47] is an approach
that automatically reveals relationships between two known objects and dis-
plays them as a graph. Since the graph that visualizes the relationships can still
become large, interactive features and �ltering options were added to the user
interface that enable a reduction of displayed nodes and facilitate understanding.
SPARQL-visualizer [35] aims to facilitate the design process of a shared ontology,
where domain experts, software developers and ontology engineers collaborate.
As they typically have a di�erent view on the ontology and understanding of
the technology, it can be di�cult to communicate proposals within the group.
Sample data, queries and results of them are visualized in table or graph form to
support their collaboration. Haystack [51] is a platform for creating, organizing
and visualizing information using RDF. It is based on the idea that aggregating
various types of users' data together in a homogeneous representation, agents
can make more informed deductions in automating tasks for users. Sextant [62]
is a Web-based system for the visualization and exploration of time-evolving
linked geospatial data and the creation, sharing, and collaborative editing of
�temporally-enriched" thematic maps which are produced by combining di�er-
ent sources of such data.

Query writers Konduit VQB [29] provides a way for users to build SPARQL
queries in an intuitive way, with having no or little knowledge about the query-
ing language. This does not mean a complete abstraction from the underlying
details, but provides an interface that suits the needs of both novice and expert
users. QueryVOWL [45] is an approach for visual querying that reuses graphical
elements from the Visual Notation for OWL Ontologies and de�nes SPARQL
mappings for them. The goal is a visual query language that is intuitive and
easy to use, while remaining �exible and preserving most of the expressiveness



58 M. Krommyda, V. Kantere

of SPARQL. SPARQL Builder [72] is an intelligent tool by which users with no
knowledge of SPARQL can generate SPARQL queries and retrieve results satis-
fying their requirements. SPARQL Builder collaborates with TogoTable, a web
application enabling biological researchers to upload their data in a table form
and add annotations obtained from SPARQL endpoints. The goal of the tool
is to support users in constructing SPARQL queries using TogoTable. NITE-
LIGHT [66,65] is a graphical tool for semantic query construction that is based
on the SPARQL query language speci�cation. The tool supports end users by
providing a set of graphical notations that represent semantic query language
constructs. The tool also provides an interactive graphical editing environment
that combines ontology navigation capabilities with graphical query visualiza-
tion techniques. Paged Graph Visualization [39] is a new semi-autonomous tool
for RDF data exploration and visualization. It consists of two main components,
the explorer and the pager, a high performance main-memory RDF storage sys-
tem. Its main strategy is to begin with a small graph and provide the tools
to incrementally explore and visualize relevant data of very large RDF ontolo-
gies. MashQL [61] is a query-by-diagram language that regards the Internet as
a database and generalizes the idea of mashups. People are allowed to build
data mashups diagrammatically. MashQL queries are translated into and exe-
cuted as SPARQL queries. The novelty of MashQL is that it allows querying a
data source without any prior understanding of the schema or the structure of
this source. SparqlFilterFlow [44,43] is an approach for visual SPARQL querying
based on the concept of extended �lter and �ow graphs. In contrast to popular
approaches, the queries can be created entirely with graphical elements. Sparql-
FilterFlow considers most features of SPARQL and can hence also be used for
the construction of complex query expressions. SMART [31], Semantic web infor-
mation Management with automated Reasoning Tool, is an open-source project,
which aims to provide intuitive tools for life scientists to represent, integrate,
manage and query heterogeneous and distributed biological knowledge. Features
include semantic query composition and validation, a graphical representation
of the query, and the retrieval of pre-computed inferences from an RDF triple
store.

Schema extraction TBox visualization [70] aims to extract and visualize the
information on the used schema, also called TBox from SPARQL endpoints.
Rather than relying on given TBox information, the tool infers what a TBox for
the available ABox data could reasonably look like based on several SPARQL
queries. This information is incrementally added to an interactive graph visual-
ization based upon the Visual Notation for OWL Ontologies. A node-link-based
graph visualization is chosen, as it allows users to grasp certain structural criteria
at a single glance, such as the presence of highly linked central classes or largely
disjoint clusters of classes, before proceeding to a deeper analysis. ViziQuer [74]
asks the user to provide an address of a SPARQL endpoint that is of interest,
then it extracts and visualizes graphically the data schema of the endpoint. The
user is able to overview the data schema and use it to construct a SPARQL
query according to the data schema. The tool extracts a simpli�ed data schema



A framework for SPARQL endpoint . . . 59

by using a prede�ned sequence of SPARQL queries at the SPARQL endpoint.
This process can take a while since schema retrieval depends on ontology size
and speed of the SPARQL endpoint while only typed data are supported. Af-
terburner [40] implements an analytical RDBMS in pure JavaScript so that it
runs completely inside a browser with no external dependencies. It generates
compiled query plans that exploit two JavaScript features: typed arrays and
asm.js. Afterburner has the ability to support interactive data exploration via
automatically-generated materialized views.

Data transformation R2D, RDF-to-Database, [63] aims to enable re-usability
of relational tools on RDF data. R2D aims to transform RDF data, at run-
time, into an equivalent normalized relational schema, thereby bridging the gap
between RDF and RDBMS concepts and making the abundance of existing
relational visualization tools available to RDF Stores. Linked Data Vizualization
Wizard (LDVizWiz) [30] is a semi-automatic way for the production of possible
visualization of linked data sets of high-level categories grouping objects that
are worth viewing. It also associates the high-level categories with some very
well-known vocabularies to facilitate the grouping of the information.

6 Experiments

In order to collect the raw data needed to create the knowledge database that is
used by the decision model we have conducted a series of experimental analysis.
The experiments were conducted using a laptop with an Intel(R) Core(TM)
i7-4500U CPU at 1.80GHz, 4GB RAM memory connected to a 12Mbps home
network connection.

Datasets. In order to compile a knowledge database able to support our
decision model we need to include information from a wide variety of SPARQL
endpoints. We have examined over 140 SPARQL endpoints. The majority of the
endpoints were not available during Autumn of 2019 when the testing was con-
ducted or were available sporadically allowing us to obtain answers to only a few
endpoints. We have managed to collect some measurements from 55 endpoints.
Ten of them had strict query time limits and/or were very slow in providing re-
sponses so only few characteristics were collected. Another ten of the endpoints
were not supporting queries using the strlength function, so we collected the
rest characteristics. Forty �ve endpoints were available throughout the testing
period and were responding to queries in a consistent and timely manner. For
these endpoints the majority of the characteristics were collected.

Metrics.We collected the data needed for the knowledge database which are
the result size limit, the total number of unique predicates, the total number of
unique subjects and objects, the most/least connected subjects and objects, the
size of the dataset, the most/least used predicates, the min/max string length
for subject,objects and predicates. Based on the above information we have
calculated and added to the knowledge database the average node degree.

Methodology. We have carefully chosen speci�c SPARQL queries that al-
low us to collect the needed information, for some queries we have created dif-
ferent versions in order to overcome the restrictions of some endpoints regarding



60 M. Krommyda, V. Kantere

the use of speci�c keywords, such as LIMIT and COUNT. We have created a
Python script that accesses the endpoints, provided as a list of URLs, and runs
the queries, recording the results in �les as text. The script records a list with
failed queries and tries to re-run them at a later time in case it is due to tempo-
rally unavailability of the endpoint. The results are then inspected and provided
that there are no issues with the responses they are inserted into the relational
knowledge database. The queries used for the collection of the information are
presented here:

� Result size limit. SELECT ?subject ?predicate ?object WHERE {?subject
?predicate ?object}

� Number of unique predicates. SELECT (count(distinct ?predicate) as ?count)
WHERE {?subject ?predicate ?object}

� Number of unique subjects. SELECT (count(distinct ?subject) as ?count)
WHERE {?subject ?predicate ?object}

� Number of unique objects. SELECT (count(distinct ?object) as ?count) WHERE
{?subject ?predicate ?object}

� Number of predicates. SELECT (count(?predicate) as ?count) WHERE {?sub-
ject ?predicate ?object}

� Minimum appearances of predicates. SELECT ?predicate (count(?predicate)
as ?count) WHERE {?subject ?predicate ?object} GROUP BY ?predicate
ORDER BY ASC(?count) LIMIT 1

� Minimum appearances of objects. SELECT ?object (count(?object) as ?count)
WHERE {?subject ?predicate ?object} GROUP BY ?object ORDER BY
ASC(?count) LIMIT 1

� Maximum appearances of predicates. SELECT ?predicate (count(?predicate)
as ?count) WHERE {?subject ?predicate ?object} GROUP BY ?predicate
ORDER BY DESC(?count) LIMIT 1

� Maximum appearances of objects. SELECT ?object (count(?object) as ?count)
WHERE {?subject ?predicate ?object} GROUP BY ?object ORDER BY
DESC(?count) LIMIT 1

� Minimum string length for predicates. SELECT ?predicate (strlen(str(?predicate))
as ?min) WHERE {?subject ?predicate ?object } ORDER BY ASC(?min)
LIMIT 1

� Minimum string length for subjects. SELECT ?subject (strlen(str(?subject))
as ?min) WHERE {?subject ?predicate ?object } ORDER BY ASC(?min)
LIMIT 1

� Minimum string length for objects. SELECT ?object (strlen(str(?object))
as ?min) WHERE {?subject ?predicate ?object } ORDER BY ASC(?min)
LIMIT 1

� Maximum string length for predicates. SELECT ?predicate (strlen(str(?predicate))
as ?max) WHERE {?subject ?predicate ?object } ORDER BY desc(?max)
LIMIT 1

� Maximum string length for subjects. SELECT ?subject (strlen(str(?subject))
as ?max) WHERE {?subject ?predicate ?object } ORDER BY desc(?max)

� Maximum string length for objects. SELECT ?object (strlen(str(?object)) as
?max) WHERE {?subject ?predicate ?object } ORDER BY desc(?max)



A framework for SPARQL endpoint . . . 61

T
a
b
le
1
.
E
x
p
er
im
en
ta
l
a
n
a
ly
si
s
o
f
S
P
A
R
Q
L
en
d
p
o
in
ts

R
e
su
lt
si
z
e

li
m
it

U
n
iq
u
e

p
re
d
ic
a
te
s
U
n
iq
u
e

su
b
je
c
ts
U
n
iq
u
e

o
b
je
c
ts

T
o
ta
l

p
re
d
ic
a
te
s

M
in

su
b
je
c
t

d
e
g
re
e

M
in

o
b
je
c
t

d
e
g
re
e

M
a
x

su
b
je
c
t

d
e
g
re
e

M
a
x

o
b
je
c
t

d
e
g
re
e

M
in

p
re
d
ic
a
te

a
p
p
e
a
ra
n
c
e
s

M
a
x

p
re
d
ic
a
te

a
p
p
e
a
ra
n
c
e
s

M
in

st
rl
e
n
o
f

p
re
d
ic
a
te

M
in

st
rl
e
n
o
f

su
b
je
c
t

M
in

st
rl
e
n
o
f

o
b
je
c
t

M
a
x

st
rl
e
n
o
f

p
re
d
ic
a
te

M
a
x

st
rl
e
n
o
f

su
b
je
c
t

M
a
x

st
rl
e
n
o
f

o
b
je
c
t

N
o
d
e

D
e
g
re
e

D
b
p
e
d
ia

[6
]

1
0
0
0
0

6
0
6
4
9

2
.4
E
+
0
7

2
.7
E
+
0
7
4
.4
E
+
0
8

1
1

5
1
2
8
5
6
1
7
9
1

1
.1
E
+
0
8

4
7

2
8

3
2

4
7

4
0
4

5
1

0
.1
2

U
R
IB
u
rn
e
r.
c
o
m

[2
7
]

1
0
0
0
0

7
5
4
2
6

3
.4
E
+
0
7

3
.8
E
+
0
7
4
.7
E
+
0
8

1
1

4
2
6
8
1
0

5
6
9
6
3
7
1

1
2
.1
E
+
0
7

3
5

2
1

5
6

7
6

5
7
6

0
.1
5

O
p
e
n
L
in
k
V
ir
tu
o
so

[2
0
]

1
0
0
0
0

4
2
5
1

2
6
7
1
6
7

3
4
7
6
1
8

1
5
3
3
6
4
6

1
1

1
9
7
4
8

9
0
0
1
4

1
2
5
4
4
8
7

3
1

1
1
2
1

3
3
1

2
3
3
4
2

0
.4
0

A
ll
ie
A
b
b
re
v
ia
ti
o
n
D
a
ta
b
a
se

[1
]

1
0
0
0
0

1
8
7

3
.6
E
+
0
7

3
.7
E
+
0
7
2
E
+
0
8

1
1

1
8
4
6
0
6

7
6
4
2
3
5
3

1
1
E
+
0
8

2
9

1
2

1
7
6

4
9

4
6
6
4

0
.3
7

E
l
V
ia
je
ro
's
to
u
ri
sm

[8
]

1
0
0
0
0

1
8
1

1
0
1
9
3
9
0

1
1
2
7
1
3
5

4
6
3
1
5
2
7

1
1

8
2
6

3
8
5
4
9
1

1
1
0
1
7
6
9
1

2
9

1
2

1
7
5

3
5
8

6
5
5
3
8

0
.4
6

L
is
ta

d
e
E
n
c
a
b
e
z
a
m
ie
n
to
s
d
e
M
a
te
ri
a
[1
6
]
3
0
0
0
0

1
4

2
4
9
3
2
8

5
3
7
2
4
4

1
7
5
7
4
3
7

1
1

5
6
5

1
7
5
7
5
8

2
9

3
5
1
5
1
6

3
2

2
4

1
4
7

6
1

1
6
5
1

0
.4
5

O
p
e
n
M
o
b
il
e
N
e
tw
o
rk

[1
9
]

4
0
0
0
0

7
6

9
0
9
8
3
7

1
8
5
0
8
6
6

2
.3
E
+
0
7

1
1

4
8
4
7

3
5
7
2
8
3

1
1
.5
E
+
0
7

3
0

3
0

1
7
3

2
0
0

6
7
1

0
.1
2

W
ik
i
P
a
th
w
a
y
s
[4
9
]

1
0
0
0
0
0

2
2
6

1
1
3
9
5
4
4

2
0
1
2
6
1
2

1
.6
E
+
0
7

1
1

4
3
3
6

1
2
3
0
9
9
2

1
2
0
2
8
8
4
5

2
9

1
2

1
7
5

1
0
1

1
1
2
3
9

0
.1
9

B
B
C
J
o
h
n
P
e
e
l
fr
o
m

D
B
T
u
n
e
[3
]

N
o
n
e

2
5

7
6
.2
5
5

1
2
2
.1
3
6

3
4
9
7
2
0

4
1

4
1

1
1
5

1
5
2
3
0
1

4
7

3
0

1
4
7

7
1

2
5
7
0

0
.5
7

M
a
g
n
a
tu
n
e
fr
o
m

D
B
T
u
n
e
[1
7
]

N
o
n
e

2
4

4
3
.3
0
1

8
8
.1
4
1

2
6
0
4
8
7

1
6

1
5

1
6

1
5

2
6
5

4
3
2
8
0

2
9

2
9

1
4
8

6
0

6
4
6
8

0
.5
0

S
T
W

T
h
e
sa
u
ru
s
fo
r
E
c
o
n
o
m
ic
s
[2
4
]

N
o
n
e

7
4
8

9
9

1
4
3

2
1

4
8

4
5

1
4
8

3
0

2
2

6
2

5
5

5
8

1
.0
3

W
e
b
-b
a
se
d
S
y
st
e
m
s
G
ro
u
p
[1
1
]

N
o
n
e

4
5

2
3
8

9
6
4

1
6
6
2

1
1

3
1

7
9

2
2
3
3

3
0

7
2

1
6
3

1
5
8

6
0
4
6

0
.7
2

A
lp
in
e
S
k
i
R
a
c
e
rs

o
f
A
u
st
ri
a
[2
]

N
o
n
e

1
1
7

1
2
6
7

1
9
5
0

1
3
4
4
1

1
1

1
4
5

1
3
9
2

1
2
7
4
5

2
9

3
2

3
2

7
4

2
1
8

1
2
7
6

0
.2
4

D
a
to
s
[5
]

N
o
n
e

3
2

6
7
7
6
0
5

1
9
3
6
7
5
3

1
.2
E
+
0
7

1
1

1
8

3
2
2
0
4
6

5
3
0
0
0

3
6

4
9

6
3

5
5

2
6
8

2
8
2

0
.2
2

L
in
k
e
d
O
p
e
n
V
o
c
a
b
u
la
ri
e
s
[1
5
]

N
o
n
e

1
2
6
9

1
7
8
1
3
6

3
4
3
7
4
8

8
6
1
6
1
2

1
1

6
9
1

3
9
1
5
4

1
1
5
7
3
3
6

1
0

3
2

3
2

9
0

1
6
6

1
0
5
3
8

0
.6
1

B
io
2
R
D
F
[4
]

N
o
n
e

1
1
.5
E
+
0
7

1
4
4

1
.4
E
+
0
9

1
1

5
7
5
0

1
2
5
6
1
5

1
1
.9
E
+
0
8

3
9

2
9

1
6
6

6
5

9
3
7
3
2

0
.0
1

O
p
e
n
D
a
ta

T
h
e
sa
u
ru
s
[1
8
]

N
o
n
e

8
0

3
0
8

1
3
5
1

3
4
5
3

1
1

5
6

3
0
3

1
4
1
2

2
9

1
8

1
8

6
5

8
9

2
6
1
7

0
.4
8

O
x
P
o
in
ts

[2
1
]

N
o
n
e

3
3
6

1
2
6
3
1
5

3
1
3
3
6
8

9
1
5
0
5
2

1
1

2
1
8
8
0

2
2
9
7
8

1
1
2
6
7
5
7

2
3

2
2

7
7

1
8
4

2
0
3
9
2
0

0
.4
8

S
o
c
ia
l
S
e
m
a
n
ti
c
W
e
b
T
h
e
sa
u
ru
s
[2
3
]

N
o
n
e

1
5
9

1
2
5
6
4

1
7
8
4
4

1
2
7
8
9
9

1
1

2
5
3

8
8
7
9

1
1
4
8
2
6

2
9

7
1

7
2

6
8

9
5

4
9
3
7

0
.2
4

V
a
c
a
n
c
ie
s
[2
8
]

N
o
n
e

3
3
6

1
2
6
3
1
5

3
1
3
3
6
8

9
1
5
0
5
2

1
1

2
1
8
8
0

2
2
9
7
8

1
1
2
6
7
5
7

2
3

2
2

7
7

1
8
4

2
0
3
9
2
0

0
.4
8

J
a
m
e
n
d
o
[1
3
]

N
o
n
e

2
6

3
3
5
.9
5
1

4
4
0
.6
8
6

1
3
8
5
5
9
8

2
1

2
1

4
8
5

6
2
6
2
4
2

2
9

2
9

1
6
0

9
4

3
3
6
6
2

0
.5
6

G
e
o
lo
g
ic
a
l
S
u
rv
e
y
o
f
A
u
st
ri
a
[1
0
]

N
o
n
e

7
6

6
2
8

2
9
3
6

7
3
1
1

1
1

4
2

5
2
7

1
5
6
6

2
9

3
2

3
2

6
5

1
0
1

5
7
0

0
.4
9

Is
id
o
re

[1
2
]

N
o
n
e

2
6
9

1
.7
E
+
0
7

7
0
9
5
6
3
8
1
4
E
+
0
8

1
1

6
9
3
3
9
7

2
6
5
1
8

1
1
.6
E
+
0
8

2
9

1
2

1
7
3
5

4
7

8
6

1
6
4
9
2

0
.2
2

D
ru
g
B
a
n
k
[7
]

N
o
n
e

1
9
6

3
1
6
9
5
0

1
7
5
9
6
0
2

3
6
7
2
5
3
1

4
1

5
6
8

2
2
5
1
5
7
1

3
5

3
0

1
6
1

5
4

3
6
1

0
.5
7

R
e
v
y
u
[2
2
]

N
o
n
e

1
9

1
1
1
0
5

2
1
7
9
1

3
8
3
5
9

1
1

1
6
5
0

1
3
0
0
5

4
7

3
5

1
6
3

8
1

7
9
0

0
.8
6

U
n
iP
ro
t
[2
6
]

N
o
n
e

2
1
4

1
.2
E
+
1
0

1
.2
E
+
1
0
5
.5
E
+
1
0

1
1

1
4
2
0
4
7

9
.5
E
+
0
7

8
3
7

3
9

3
3

8
0

5
2

0
.4
3

E
v
e
n
tM

e
d
ia

[9
]

1
0
0
0
0

1
7
3

1
.1
E
+
0
7

5
4
4
7
8
5
6

1
.1
E
+
0
8

1
1

1
1
9

6
9
8
9
0
3

1
2
.9
E
+
0
7

1
7
3

6
0
.1
6

C
a
m
e
ra

d
e
i
d
e
p
u
ta
ti
[1
4
]

1
0
0
0
0

3
5
7

2
.4
E
+
0
8

1
1

2
2
0
4
6
3
7

1
4
.1
E
+
0
7

3
7

4
4

4
4
3

6
9

4
6
8
8
6



62 M. Krommyda, V. Kantere

Fig. 8. The number of unique subjects, predicates and objects for the examined end-
points

Results.We present in Table 1 the results of the experimental analysis for some
of the endpoints that we have evaluated. Aiming to keep the table readable and
coherent we have added only the endpoints that have provided answers to all but
one or two queries. Based on the results obtained we present here an in-depth
analysis of the characteristics.

� Result size limit. From the 45 endpoints examined only 15 of them had any
limit at the result size. The most popular limit was 10.000 but the value
had a great deviation, from 500 to 100.000 elements and an average value of
18.700. This is a very important �nd as it sets the requirements regarding
the volume of information that the user interface should be able to handle.

� Number of unique predicates. Endpoints have from 1 to 75.426 unique pred-
icates, with an average value of 4.388. This deviation is very interesting with
regard to the semantic di�erentiation of the datasets. Only a few datasets
are focused on few semantic relationships between their entities, while most
of them o�er a higher variance.

� Number of unique subjects. The overall size of the dataset a�ects the number
of unique subjects. The examined endpoints have from 48 to 11.520.028.275
unique subjects with an average value of 343.734.281.

� Number of unique objects. The overall size of the dataset a�ects also
the number of unique objects. The examined endpoints have from 99 to
12.153.725.295 unique subjects with an average value of 295.390.891. While
the minimum and maximum values are higher than the ones for the subjects,
the average number of objects per endpoint is signi�cantly lower from the
average number of subjects. This is mostly due to the fact that few datasets
contain descriptive information and free text while most of them depend on
categories from the Semantic Web to describe the contained information.



A framework for SPARQL endpoint . . . 63

Fig. 9. The number of predicates for the examined endpoints

In Figure 8 we present the chart with all the values of unique subjects,
predicates and objects for the examined endpoints.

� Number of predicates. The total number of predicates in a dataset rep-
resents the number of all the triplets of information and as a result the
size of the dataset. Endpoints are dedicated to dataset ranging from 143 to
55.343.596.553 triplets, and an average value of 1.532.244.807. The di�erence
between the minimum and maximum values is indicative of the diversity of
the datasets available through endpoints. The results are presented in Figure
9.

� Minimum & Maximum appearances of predicates. The minimum appear-
ances of a predicate range from 1 to 142.047 depending on the type of dataset
while the maximum times a predicate is repeated in a dataset can be as high
as 186.915.393 for an endpoint. These value show that endpoints provide ac-
cess to diverse datasets, some are focused on speci�c relationships between
entities, thus having few predicates that repeat many times, while others
cover a wide range of topics and concepts, limiting the re-usability of terms.

� Minimum & Maximum appearances of subjects. The minimum appearances
of a subject range from 1 to 16 while the maximum can be as high as 693.397
for an endpoint. As expected, here too the diversity of the datasets is a�ecting
the deviation of the values.

� Minimum & Maximum appearances of objects. For the objects this deviation
is even more pronounced. Here, the minimum appearances of an object range
from 1 to 15 while the maximum can be as high as 12.856.179 for an endpoint.
Similarly with the predicates, datasets that are providing information for
speci�c scienti�c �elds repeat key concepts and semantic terms multiple
times.



64 M. Krommyda, V. Kantere

Fig. 10. The number of appearances for subjects, predicates and objects for the ex-
amined endpoints

In Figure 10 we present the chart with all the values of appearances for
subjects, predicates and objects for the examined endpoints.

� Minimum & Maximum string length for predicates. The string length for
the predicates ranges from 47 to 371 characters, with an average value of 62.
These values are within the expected range as predicates are mostly URLs
from the Semantic Web.

� Minimum & Maximum string length for subjects. The string length for the
subjects ranges from 72 to 404 characters, with an average value of 87. These
values are higher than the ones for the predicates as subjects sporadically
include free text in addition to URLs from the Semantic Web.

� Minimum & Maximum string length for objects. The string length for the
objects ranges from 72 to 203.920 characters, with an average value of 36.262.
Given that objects are mostly descriptive and include a lot of free text these
values are again expected.
In Figure 11 we present the chart with the maximum string lengths for
subjects, predicates and objects for the examined endpoints and in Figure
12 the minimum string lengths.

� Average node degree. The average node degree for the datasets is 0.32, in-
dicating that the datasets are not very connected and probably include in-
dependent sub-graphs. The distribution of the values is shown in Figure 13.



A framework for SPARQL endpoint . . . 65

Fig. 11. The maximum string lengths for subjects, predicates and objects for the ex-
amined endpoints

Fig. 12. The minimum string lengths for subjects, predicates and objects for the ex-
amined endpoints

Conclusions

In this paper, we present a novel system architecture that supports both expert
and novice users with querying SPARQL endpoints, exploring and visualizing
the query results in a dynamic way. Our system has been designed in a schema
agnostic and data structure robust way that allows the visualization of diverse
query results in a user-friendly and interactive way.



66 M. Krommyda, V. Kantere

Fig. 13. The node degree for the examined endpoints

Acknowledgment

The experimental analysis presented in Section 6 was supported by Mr. Tara
Venkata Sai Rahul Muktineni as part of his Master Project for the University of
Ottawa.

References

1. Allie abbreviation and long form database in life. http://data.allie.dbcls.jp/
sparql (2019)

2. Alpine ski racers of austria. http://vocabulary.semantic-web.at/PoolParty/
sparql/AustrianSkiTeam (2019)

3. Bbc john peel sessions from dbtune. http://dbtune.org/bbc/peel/cliopatria/
yasgui/index.html (2019)

4. Bio2rdf. https://bio2rdf.org/sparql (2019)
5. Datos. http://datos.bcn.cl/sparql (2019)
6. Dbpedia. http://dbpedia.org/sparql/ (2019)
7. Drugbank. http://wifo5-03.informatik.uni-mannheim.de/drugbank/snorql/

(2019)
8. El viajero's tourism dataset. http://webenemasuno.linkeddata.es/sparql

(2019)
9. Eventmedia. http://eventmedia.eurecom.fr/sparql (2019)
10. Geological survey of austria (gba) - thesaurus. https://resource.geolba.ac.at/

PoolParty/sparql/lithology (2019)
11. Information about the web-based systems group. http://wifo5-03.informatik.

uni-mannheim.de/dws-group/snorql/ (2019)
12. Isidore. https://isidore.science/sparql (2019)
13. Jamendo. http://dbtune.org/jamendo/cliopatria/yasgui/index.html (2019)
14. Linked open data camera dei deputati. http://dati.camera.it/sparql (2019)

http://data.allie.dbcls.jp/sparql
http://data.allie.dbcls.jp/sparql
http://vocabulary.semantic-web.at/PoolParty/sparql/AustrianSkiTeam
http://vocabulary.semantic-web.at/PoolParty/sparql/AustrianSkiTeam
http://dbtune.org/bbc/peel/cliopatria/yasgui/index.html
http://dbtune.org/bbc/peel/cliopatria/yasgui/index.html
https://bio2rdf.org/sparql
http://datos.bcn.cl/sparql
http://dbpedia.org/sparql/
http://wifo5-03.informatik.uni-mannheim.de/drugbank/snorql/
http://webenemasuno.linkeddata.es/sparql
http://eventmedia.eurecom.fr/sparql
https://resource.geolba.ac.at/PoolParty/sparql/lithology
https://resource.geolba.ac.at/PoolParty/sparql/lithology
http://wifo5-03.informatik.uni-mannheim.de/dws-group/snorql/
http://wifo5-03.informatik.uni-mannheim.de/dws-group/snorql/
https://isidore.science/sparql
http://dbtune.org/jamendo/cliopatria/yasgui/index.html
http://dati.camera.it/sparql


A framework for SPARQL endpoint . . . 67

15. Linked open vocabularies (lov). https://lov.linkeddata.es/dataset/lov/

sparql (2019)
16. Lista de encabezamientos de materia as linked open. http://id.sgcb.mcu.es/

sparql (2019)
17. Magnatune from dbtune. http://dbtune.org/magnatune/cliopatria/yasgui/

index.html (2019)
18. Open data thesaurus. http://vocabulary.semantic-web.at/PoolParty/sparql/

OpenData (2019)
19. Open mobile network. http://www.openmobilenetwork.org:8890/sparql (2019)
20. Openlink virtuoso. http://demo.openlinksw.com/sparql/ (2019)
21. Oxpoints (university of oxford). https://data.ox.ac.uk/sparql/ (2019)
22. Revyu. http://revyu.com/sparql/queryform (2019)
23. Social semantic web thesaurus. http://vocabulary.semantic-web.at/

PoolParty/sparql/semweb (2019)
24. Stw thesaurus for economics. http://zbw.eu/beta/sparql-lab/ (2019)
25. Time ontology in owl. https://www.w3.org/TR/owl-time/ (2019)
26. Uniprot. https://sparql.uniprot.org/sparql (2019)
27. Uriburner.com. http://uriburner.com/sparql/ (2019)
28. Vacancies (university of oxford). https://data.ox.ac.uk/sparql/ (2019)
29. Ambrus, O., Möller, K., Handschuh, S., et al.: Konduit vqb: a visual query builder

for sparql on the social semantic desktop. In: Workshop on visual interfaces to the
social and semantic web (2010)

30. Atemezing, G.A., Troncy, R.: Towards a linked-data based visualization wizard.
In: COLD (2014)

31. Battista, A.D.L., Villanueva-Rosales, N., Palenychka, M., Dumontier, M.: Smart: A
web-based, ontology-driven, semantic web query answering application. Semantic
Web Challenge 295 (2007)

32. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach,
J., Lerer, A., Sheets, D.: Tabulator: Exploring and analyzing linked data on the
semantic web. In: ISWUIW. Citeseer (2006)

33. Berners-Lee, T., Fischetti, M.: Weaving the Web: The original design and ultimate
destiny of the World Wide Web by its inventor. DIANE Publishing Company
(2001)

34. Bielefeldt, A., Gonsior, J., Krötzsch, M.: Practical linked data access via sparql:
The case of wikidata. In: LDOW@ WWW (2018)

35. Bonduel, M., Rasmussen, M.H., Pauwels, P., Vergauwen, M., Klein, R.: Sparql-
visualizer: A communication tool for collaborative ontology engineering processes

36. Brunetti, J.M., Auer, S., García, R.: The linked data visualization model. In: ISWC
(2012)

37. Brunetti, J.M., Auer, S., García, R., Klímek, J., Ne£ask�y, M.: Formal linked data
visualization model. In: Proceedings of ICIIWAS. ACM (2013)

38. De Araujo, S.F., Schwabe, D.: Explorator: a tool for exploring rdf data through
direct manipulation. In: DOW2009 (2009)

39. Deligiannidis, L., Kochut, K.J., Sheth, A.P.: Rdf data exploration and visualization.
In: Proceedings of the ACM CyberInfrastructure. ACM (2007)

40. El Gebaly, K., Lin, J.: In-browser interactive sql analytics with afterburner. In:
ACM ICMD. ACM (2017)

41. Evergreen, S.D.: E�ective data visualization: The right chart for the right data.
Sage Publications (2019)

42. Graves, A.: Creation of visualizations based on linked data. In: International Con-
ference on WIMS. ACM (2013)

https://lov.linkeddata.es/dataset/lov/sparql
https://lov.linkeddata.es/dataset/lov/sparql
http://id.sgcb.mcu.es/sparql
http://id.sgcb.mcu.es/sparql
http://dbtune.org/magnatune/cliopatria /yasgui/index.html
http://dbtune.org/magnatune/cliopatria /yasgui/index.html
http://vocabulary.semantic-web.at/PoolParty/sparql/OpenData
http://vocabulary.semantic-web.at/PoolParty/sparql/OpenData
http://www.openmobilenetwork.org:8890/sparql
http://demo.openlinksw.com/sparql/
https://data.ox.ac.uk/sparql/
http://revyu.com/sparql/queryform
http://vocabulary.semantic-web.at/PoolParty/sparql/semweb
http://vocabulary.semantic-web.at/PoolParty/sparql/semweb
http://zbw.eu/beta/sparql-lab/
https://www.w3.org/TR/owl-time/
https://sparql.uniprot.org/sparql
http://uriburner.com/sparql/
https://data.ox.ac.uk/sparql/


68 M. Krommyda, V. Kantere

43. Haag, F., Lohmann, S., Bold, S., Ertl, T.: Visual sparql querying based on extended
�lter/�ow graphs. In: International Working Conference on Advanced Visual In-
terfaces. ACM (2014)

44. Haag, F., Lohmann, S., Ertl, T.: Sparql�lter�ow: Sparql query composition for
everyone. In: ESWC. Springer (2014)

45. Haag, F., Lohmann, S., Siek, S., Ertl, T.: Visual querying of linked data with
queryvowl. SumPre-HSWI@ ESWC (2015)

46. Heim, P., Ertl, T., Ziegler, J.: Facet graphs: Complex semantic querying made easy.
In: ESWC. Springer (2010)

47. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: Rel�nder:
Revealing relationships in rdf knowledge bases. In: Semantic and Digital Media
Technologies. Springer (2009)

48. Heim, P., Ziegler, J., Lohmann, S.: gfacet: A browser for the web of data. In:
IMC-SSW'08. Citeseer (2008)

49. Helmich, J., Klímek, J., Ne£ask�y, M.: Visualizing rdf data cubes using the linked
data visualization model. In: ESWC. Springer (2014)

50. Hoe�er, P., Granitzer, M., Veas, E.E., Seifert, C.: Linked data query wizard: A
novel interface for accessing sparql endpoints. In: LDOW (2014)

51. Huynh, D., Karger, D.R., Quan, D., et al.: Haystack: A platform for creating,
organizing and visualizing information using rdf. In: Semantic Web Workshop.
vol. 52 (2002)

52. Katayama, T.: D3sparql: Javascript library for visualization of sparql results. In:
SWAT4LS. Citeseer (2014)

53. Kelleher, C., Wagener, T.: Ten guidelines for e�ective data visualization in scienti�c
publications. Environmental Modelling & Software 26 (2011)

54. Kempf, D.A.O.: Stw-info (2019), http://www.zbw.eu/en/stw-info/
55. Klímek, J., Helmich, J., Ne£ask�y, M.: Payola: Collaborative linked data analysis

and visualization framework. In: ESWC. Springer (2013)
56. Krommyda, M., Kantere, V.: Understanding sparql endpoints through targeted

exploration and visualization. In: Graph Computing 2019 (2019)
57. Krum, R.: Cool infographics: E�ective communication with data visualization and

design. John Wiley & Sons (2013)
58. Lopez, V., Fernández, M., Motta, E., Stieler, N.: Poweraqua: Supporting users in

querying and exploring the semantic web. Semantic Web (2012)
59. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the

most out of wikidata: Semantic technology usage in wikipedia's knowledge graph.
In: ISWC 18. Springer (2018)

60. Martin, M., Abicht, K., Stadler, C., Ngonga Ngomo, A.C., Soru, T., Auer, S.:
Cubeviz: Exploration and visualization of statistical linked data. In: World Wide
Web. ACM (2015)

61. Mustafa, J., Dikaiakos, M.D.: Mashql: A query-by-diagram topping sparql towards
semantic data mashups. University of Cyprus mjarrar

62. Nikolaou, C., Dogani, K., Bereta, K., Garbis, G., Karpathiotakis, M., Kyzirakos,
K., Koubarakis, M.: Sextant: Visualizing time-evolving linked geospatial data.
Journal of Web Semantics (2015)

63. Ramanujam, S., Gupta, A., Khan, L., Seida, S., Thuraisingham, B.: R2d: A bridge
between the semantic web and relational visualization tools. In: IEEE ICSC. IEEE
(2009)

64. Rietveld, L., Hoekstra, R., et al.: Man vs. machine: Di�erences in sparql queries.
In: ESWC (2014)

http://www.zbw.eu/en/stw-info/


A framework for SPARQL endpoint . . . 69

65. Russell, A., Smart, P.: Nitelight: A graphical editor for sparql queries (2008)
66. Russell, A., Smart, P.R., Braines, D., Shadbolt, N.R.: Nitelight: A graphical tool

for semantic query construction (2008)
67. Skjæveland, M.G.: Sgvizler: A javascript wrapper for easy visualization of sparql

result sets. In: ESWC. Springer (2012)
68. Tufte, E.R.: The visual display of quantitative information, vol. 2. Graphics press

Cheshire, CT (2001)
69. Wang, Y., Zhu, M., Qu, L., Spaniol, M., Weikum, G.: Timely yago: harvesting,

querying, and visualizing temporal knowledge from wikipedia. In: International
Conference on Extending Database Technology. ACM (2010)

70. Weise, M., Lohmann, S., Haag, F.: Extraction and visualization of tbox information
from sparql endpoints. In: EKAW. Springer (2016)

71. Wirtschaft, L.I.: Zbw (2019), http://www.zbw.eu/de/
72. Yamaguchi, A., Kozaki, K., Lenz, K., Wu, H., Kobayashi, N.: An intelligent sparql

query builder for exploration of various life-science databases. In: IESD@ ISWC
(2014)

73. Zhu, Y.: Measuring e�ective data visualization. In: International Symposium on
Visual Computing. Springer (2007)

74. Zviedris, M., Barzdins, G.: Viziquer: a tool to explore and query sparql endpoints.
In: ESWC. Springer (2011)

http://www.zbw.eu/de/

	A framework for exploration and visualization of SPARQL endpoint information

