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Abstract. In the field of multimodal communication, sign language is
and continues to be, one of the most understudied areas. Thanks to the
recent advances in the field of deep learning, there are far-reaching impli-
cations and applications that neural networks can have for sign language
mastering. This paper describes a method for ASL alphabet recognition
using Convolutional Neural Networks (CNN), which allows to monitor
user’s learning progress. American Sign Language (ASL) alphabet recog-
nition by computer vision is a challenging task due to the complexity in
ASL signs, high interclass similarities, large intraclass variations, and
constant occlusions. We produced a robust model that classifies letters
correctly in a majority of cases. The experimental results encouraged us
to investigate the adoption of AI techniques to support learning of a sign
language, as a natural language with its own syntax and lexicon. The
challenge was to deliver a mobile sign language training solution that
users may adopt during their everyday life. To satisfy the indispensable
additional computational resources to the locally connected end- user
devices, we propose the adoption of a Fog-Computing Architecture.

Keywords: Fog-Computing; Neural Network; Sequence Learning; Sign Lan-
guage.

1 Introduction
The United Nations Convention on the Rights of Persons with Disabilities rec-
ognizes and promotes the use of sign languages, establishing that sign languages
are equal in status to spoken languages [30]. It recommends states parties to
facilitate the learning of sign language and promote the linguistic identity of
the deaf community. One of the major challenges is to raise awareness of the
importance of providing sign language learning support. Most deaf children are
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born to hearing parents and are not exposed to sign language until school age,
missing a vital window of time for language acquisition, which corresponds to
the first three years of life. As a result, damage due to acoustic sensory depri-
vation may occur and the associated effects will not only affect the learning
process of the word but will also negatively affect the global perceptual mech-
anism and consequently the behavior of the subject [12]. Early access to sign
language and services in sign language, including quality education available in
sign language, is recognized to be vital to the growth and development of the
deaf individual and critical to the achievement of personal goals. While special
education promotes the integration of children with and without disabilities as
the least restrictive environment (LRE), Deaf cultural perspective holds that a
language-rich environment is best achieved through sign language. Therefore, an
LRE for deaf children involves access to information through sign language and
interaction with peers. The goal of our research has been to provide IT support
to the cumbersome process of sign language learning, relying on the use of deep
learning techniques. In the first part of the paper, we present a recognition sys-
tem that uses Convolutional Neural Networks (CNN), which was developed at
the HCI- UsE laboratory of the University of Salerno to provide sign language
learners with an advantageous interactive experience. Demonstrating through
the first experimental phase that our system elicits more positive feelings than
the traditional video-based learning technique. Several studies confirm that there
has been increasing recognition of the influence of emotion in human computer
interactions and the use of the software by users [10] [11] [23]. The main ob-
jectives of subsequent experiments we conducted on the system were the study
of user’s ability to efficiently and effectively reproduce the letters submitted to
him/her. The results obtained from the tests carried out were positive about user
learning. Most participants developed, during the various experimental sessions,
a higher level of familiarity with the sign language, leading to an increase in the
accuracy detected by the neural network. The system has proven to be a valid
teaching tool for children or adults with no experience with this language, who
may start learning the sign language alphabet. A natural step beyond has been
to conceive a similar system that would deal with the complexities of the whole
language of signs, as described in the second part of the paper. Sign languages
are natural languages with their own grammar and lexicon. This raised some new
challenges when conceiving the new system, not only because of the complexities
of these signs, the high interclass similarities, the large interclass variation, and
constant finger occlusion, but also for the computational resources required and
the low-latency requirements to achieve answers in near real-time. In a previ-
ous research we experienced the high acceptance gained by mobile applications
within the deaf community as valid communication means [9]. Therefore, we
also aimed at delivering a deep learning solution on mobile smart devices to
facilitate sign language training activities during everyday life. This gave rise
to the idea of a Fog-Computing Architecture, which could provide additional
computational resources to the locally connected end- user devices. The paper
is structured as follows. Some related work is presented in Section II. Section
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III presents the system we realized to recognize the American Sign Language
(ASL) alphabet, Section IV describes a comparative studies between the tra-
ditional video-based self-learning and the one based on our interactive system.
and Section V describes the experiment performed and summarizes the results.
Section V proposes the fog-computing architecture underlying the complete ASL
learning support. Section VI concludes the paper.

2 Related Work
In general, the ASL alphabet recognition task is formulated as two subtasks:
feature extraction and subsequent classification. Researchers have been using
different methods to extract discriminative features and create powerful classi-
fiers. In [27], Pugeault and Bowden apply Gabor filters to extract features from
both color and depth images at 4 different scales. Then a multiclass random for-
est classifier is used to recognize the 24 static ASL alphabet signs. They report a
49% recognition rate in the leave-one-out experiment. Half of the signs could not
be recognized, showing that Gabor filters cannot capture enough discriminative
information for differentiating different signs. Also, Wang et al. used color and
depth images for recognition [31]. They proposed a Superpixel Earth Mover’s
Distance (SP- EMD) metric, and they reported a 75.8% recognition rate on the
benchmark dataset. In [19] using a Support Vector Machine (SVM) classifier,
Maqueda et al. gained 83.7% leave-one-out accuracy on the benchmark dataset.
In [22] features were extracted from only depth images on randomly positioned
line segments and a random forest was used for classification, with 81.1% ac-
curacy. Some studies attempted to exploit the 3D information embedded in the
depth images (3D approach) [15] [32] [34] [33] [28]. Such 3D approaches
are promising to achieve better performance than image representations due to
the extra dimension. However, the 3D point cloud obtained from the depth im-
age is sparse at the regions with large gradients and absent at the occluded
areas, which affects the overall performance. Due to the articulated structure
of hands, some studies implemented a hand part segmentation step before the
gesture recognition (bottom-up approach). In [13], Keskin et al. extracted depth
comparison features from depth images following the method proposed in [29]
and fed them into a per-pixel random forest classifier. They reported their leave-
one-out recognition rate as 84.3% on the benchmark dataset. This classifier was
trained using synthetic depth images which have the parts’ ground truth of a
hand. To generate more realistic training data, a colored latex glove was em-
ployed by Dong et al., resulting in a 70% recognition rate on the benchmark
dataset [6]. One of the major drawbacks for those bottom-up approaches is that
the sign recognition performance is highly dependent upon the result of the hand
part segmentation, and it is challenging to improve the performance of the hand
part segmentation because of the high complexities and constant occlusions. Re-
cently, deep learning methods, such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), have demonstrated their extraordinary
performance in various classification and recognition tasks.
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2.1 From Pose to Gesture

The Sign language (SL), seen as a crucial language for hearing and speech im-
paired people, can be considered as the most grammatically structured gestural
communication [24]. A Gesture can be seen as a continuous sequence of poses.
In [20] Marcon et al. use Hidden Markov Models (HMMs), trained on different
gestures, to identify a set of key postures and to classify their sequences over a
set of possible actions. Cui et al. in [7] proposed a CNN with temporal convolu-
tion and pooling for spatiotemporal representation learning from a video, and an
RNN with a bidirectional Long Short Term Memory (LSTM) for the mapping
of feature sequences to sequences of annotations. Madhuri et al. in [18], present
a real-time vision-based system for recognizing finger spelling continuous Sign
Language (SL) using a single camera to track user’s unadorned hands. The goal
is to help hearing or speech impaired people to communicate with people who
do not know SL. Although facial expressions add relevant information to the
emotional aspect of the sign, in [18], they are not considered since their analy-
sis complicates the problem. They only focus on translating a one-handed sign
of representation of alphabets (A-Z) and numbers (0-9). Some researchers have
proposed techniques to detect predefined signs from a continuous video stream
(sign spotting), while others have handled the classification of isolated gestures
into the correct category. Continuous SL recognition, instead, deals with tran-
scribing videos of SL sentences into ordered sequences of annotations, possibly in
real-time. Cui et al. in a recent work [8], focus on continuous SL recognition on
videos, where learning the spatiotemporal representations as well as their tem-
poral matching for the labels is crucial. They claim their framework based on
recurrent convolutional neural networks shows a superior capability of learning
temporal dependencies compared to HMMs. Most related researches are using
Markov models (HMM) or LSTM networks. Although both those networks take
into account the spatiotemporal aspect of Gesture, they face different issues. The
HMM solution has a problem with a more prolonged gesture, while the LSTM
requires powerful computational resources, and it is slow on a small device like
a smartphone. Panzner e Cimiano in [25] compare a purely generative model
based on Hidden Markov Models to a discriminatively trained recurrent LSTM
network in terms of their properties and their suitability to learn and represent
models of actions. They highlight the limitation of temporal context with HMM
and the need for an extraordinary computational resource with LSTM networks.

3 Learning ASL Alphabet relying on CNN Support
The proposed system has as its main objective to be a bridge of communica-
tion between deaf people and today’s society. The system offers a chance to
those who are inexperienced in this language, a simple and interactive learning
method. Our classification of letters is carried out using a convolutional neural
network (CNN or ConvNet). CNNs are machine learning algorithms that have
been incredibly successful in managing a variety of activities related to video
and image processing. Our network, after being trained, allows the recognition
of gestures, through the use of images made by the user. During the execution
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of the application, the user will have to take photos containing one of the 24
static letters of the American alphabet. After this, the classification of the latter
will be carried out, i.e. the neural network will define the letter corresponding to
the gesture made by the user. Finally, the number of correctly executed letters
and the number of incorrect ones will be shown to the user, with the consequent
level of learning developed during the use of the system.

3.1 Methods Used

1. Transfer Learning : is a machine learning technique where models are trained
on (usually) larger data sets and refactored to fit more specific or niche data.
This is done by recycling a portion of the weights from the pre-trained model
and reinitializing or otherwise altering weights at shallower layers. The most
basic example of this would be a fully trained network whose final classifi-
cation layer weights have been reinitialized to be able to classify some new
set of data. The primary benefits of such a technique are its less demand-
ing time and data requirements. However, the challenge in transfer learning
stems from the differences between the original data used to train and the
new data being classified. Larger differences in those data sets often require
re-initializing or increasing learning rates for deeper layers in the net.

2. AlexNet: We employed Matlab in order to develop, test, and run our CNNs.
Specifically, we used AlexNet. AlexNet is a Convolutional network that
has had a great impact in the field of machine learning, designed by Alex
Krizhevsky. The network acquires an image as input and generates a label
for the object in the image along with the probabilities for each category
of objects. AlexNet consists of 8 layers: the first 5 are Convolutional layers,
and 3 layers are fully connected and can classify images into 1000 categories
of objects, such as keyboard, mouse, pencil and many animals.

3.2 The System

In order to obtain images of the user signing in real-time, we created a desk
application that is able to access a native camera. Image capture rate was a
massive problem we struggled with. Our desk application sends images to our
net one by one. Each time, the net classifies the image and presents probabilities
for each letter. Our system, as we can see in figure 1, presents on the left side the
GIF of the letter to be reproduced by the user, and the consequent reproduction
of the same. On the right, instead, we see the image acquired by the camera.
When the user feels confident about the sign being made, he/she can take a
photo. The letters are randomly generated (from 1 to 24) by the system. Once
the photo is taken, it will be shown on the left side of the page. Moreover, it will
be possible to change the photo just taken. Moreover, if the user is not able to
reproduce the requested letter, he/she may decide to change it.
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Fig. 1. Core Page of the system.

Furthermore, our system presents another page containing the results of the
tests performed by the user. In figure 2 we can see a table divided into three
columns: in the first one there are the letters that the user made during the test;
in the second column the relative results are present for each letter, and that is
how the neural network has classified the images sent to it; in the last column
we can see a graphical response of the single test carried out. Marking the wrong
result with a red sticker and a positive response with a green one. Finally, at
the bottom of the page, we find the level of learning detected during the test.
This result comes from the classification of all images made by the user during
the experiment. The level of learning coming from the network is not based on
an average of the correct or wrong letters, but the neural network produces this
value based on the skill and precision that the user has used in reproducing
the letters. A high percentage of learning assumes, therefore, that the user had
better precision than the other users.

Fig. 2. Result page of the system.

3.3 Dataset and Features

ASL Alphabet was the most incisive DataSet in the training of our network.
It contains about 87,000 images of various kinds and depths. The dataset is
divided into two directories. The second dataset we used within the system,
Sign Language and Static gesture recognition, was less predominant for training.
It contains a very limited number of data and, consequently, it is inefficient for
training an effective network. The total number of data present is 1,687. With the
use of those datasets, we have created a new dataset including all the data, about
73,488 images, and we have decomposed it to develop two happy directories: the
first including 80% of the images, to perform training, the second, including the
remaining 20%, for tests. The network training was carried out on 58,944 images
of various kinds. The images have been reduced in size to be consistent with the
specifications of the network used. Each image was resized to 227x227 pixels.
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Fig. 3. Dataset example. Left: ASL Alphabet. Righ: Sign Language and Static gesture
recognition.

3.4 Train and Test

In order to compare our results with state of the art, we considered two metrics,
accuracy and confusion matrix.

1. Accuracy and loss: Accuracy in the validation set is the most popular crite-
rion in the literature, defined as the percentage of correctly classified exam-
ples. Splitting the dataset into two for training and validation, we achieved
a high validation accuracy, namely 99.96% on the alphabet gestures. The
running time of the network train was 491 minutes and 24 seconds, per-
forming 13,800 iterations. The network training has led, therefore, to the
development of an efficient network, with very high accuracy in classifying
the images, so that we can build a reliable sign recognition system.

Fig. 4. Train Convolutional Neural Network.

2. Confusion Matrix : Additionally, we used a confusion matrix, which is a spe-
cific table layout that allows visualization of the performance of the classifi-
cation model by class. This allowed us to evaluate which letters are the most
misclassified and draw insights for future improvement.
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Fig. 5. Test Convolution Neural Network – Confusion Matrix.

4 Comparative Study based on Emotions
The goal of this experiment is to study the different effects on the emotions
between the traditional video-based self-learning and the one based on an in-
teractive CNN system. Indeed, when users study videos cannot interact with
other students or teachers and this, in general, can be less motivating respect
to other forms of learning. The literature suggests that maximizing user’s posi-
tive emotions and minimizing their negative emotions leads to greater learning
and productivity, and less frustration for the user. Then, the objectives of this
experiment are both measuring the difference in terms of learning efficacy and
in terms of learning emotions and feelings. For this, we designed a between-
subjects experiment to use as a pilot for further investigation. The experiment
involved 10 participants who were asked to do one personal session of sign lan-
guage self-learning in a controlled environment. The participants were divided
into two groups and were asked to practice with sign language and then test
their knowledge through an assessment; one group using the CNN application
and one using traditional learning videos. During the experiment, we collected
the assessment results of each participants and evidence of their emotions and
feelings using a questionnaire and a facial expression analysis system.

4.1 Independent and dependent variables

The independent variable in the experiment is the application used to learn the
sign language which the subjects use before performing a language assessment.
More precisely, the prototype based on CNN and a traditional learning video.
The dependent variables are the learning efficacy measured through the assess-
ment and the users’ emotions and feelings measured during the learning task
and the assessment. Regarding the learning video, it shows the animated sign
besides the corresponding letter and shows the same animations used in the
CNN software. In this way, the two different learning approaches offer exactly
the same content.

4.2 Between-subjects Design

In our experiment, we decided to adopt a between-subjects design with the aim to
limit the effects of the bias. We picked 10 test subjects selecting them taking into
account the following aspects: they are technologically proactive, with at least
the basic technical skills, and they have no sign language previous knowledge.
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The participants are divided into two groups: Gr1 and Gr2. Gr1 will use the
CNN application and Gr2 the video. Additionally, to limit bias due to users’
variability, participants were randomly assigned to each group.

4.3 Environment

The experiment took place in a controlled environment, properly the HCI-UsE
Lab of the University of Salerno, with the aim to have all the factors held constant
and controlled except for the independent variable.

4.4 Assessment metrics

Formal usability tests in a lab setting are an excellent method to evaluate
whether users can complete tasks; however, the techniques employed have lim-
ited effectiveness for measuring the user’s emotional experience and desirability
of the use of the product. One standard method used to evaluate these intangi-
ble aspects is a questionnaire with Likert scales. To measure the users’ emotions
and feelings we selected the questionnaire presented in [26] that is designed to
measure emotions in learning, and we tailored it to fit our experiment necessities.
Users were not given ratings on predetermined scales but rather created their
own scales with an opportunity to explain their answers. The questionnaire is
presented in table 1. Questions were answered using a 5-point Likert scale with 1
for strongly disagree, 5 for strongly agree and 3 for a neutral response. According
to the literature, a 5-point Likert scale increases the response rate and quality
and it also reduces respondents’ “frustration level” [5] [2]. The questionnaire is
formed of three parts. The first part must be filled out before starting the learn-
ing session and it is about uses’ emotions and feelings towards their capabilities
and study. The second part is related to the learning session and the last part is
about the users’ feelings after an assessment. Then table 1 is divided into three
sections: “Before the learning session”, “During the learning session”, “After the
evaluation session”.

Questionnaires are a useful means to go through aspects indicated by re-
searchers, but sometimes there are aspects that can elude. For this reason, it
was decided to complete the study of the emotions adding a facial expressions
analysis. Analysing facial expressions allows rapid, quantifiable insights into ex-
pressed facial emotions. Facial expression analysis has been carried out manually
for decades, now this can be carried out in real-time, helping you understand
the facial emotions elicited by stimuli as fast as they are generated, through
software. As measurement metrics for the evaluation we used summary scores of
engagement and valence are provided, as they provide an overview of emotion.
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Table 1. Comparison of ellipse fitting models.

Before the learning session
1b Anxiety Thinking about this activity makes me feel uneasy (b)
2b Hopelessness I feel hopeless when I think about studying
3b Hopelessness I feel hopeless
4b Hope I am confident when I go to start the experiment
5b Hope I have an optimistic view toward studying
6b Hope I have great hope that my abilities will be sufficient to learn sign language
During the learning session
1d Shame I feel ashamed that I can’t absorb the simplest of details
2d Shame I get embarrassed
3d Boredom I get bored
4d Boredom The material bores me to death
5d Pride I’m proud of my capacity
6d Anger Studying a gesture makes me irritated
7d Anxiety I get tense and nervous while learning a gesture
8d Enjoyment For me the test is a challenge that is enjoyable
9d Enjoyment I enjoyed learning
10d Enjoyment I enjoyed acquiring new knowledge
11d Hopelessness I have lost all hope that I have the ability to do well on the test
After the assessment
1a Pride I am proud of myself
2a Pride I’m proud of how well I mastered the test
3a Anger I am angry
4a Anger I am fairly annoyed
5a Relief I feel very relieved
6a Shame I feel ashamed

4.5 Tasks execution

Task.1 - Depending on the group belonging, the participants were asked to ex-
ecute a learning session using the CNN software or the videos on the letters
of the American language sign. Task.2 - Then, they were asked to complete an
interactive learning assessment in which they watched an animation and answer
to multiple choice questionnaire. Before and after the first task and after the
assessment they were required to fill out the questionnaire about their emotions
during the learning. Each session lasted an average of 30 minutes.

4.6 Result

In this section we report and compare the results of the experiment obtained
through questionnaires and through facial analysis. In this first part, we will
see the results of the questionnaire for the two groups. Each of the following
tables reports the mean of answers for the two groups for each questionnaire
item, the difference between the means and each standard deviation (S.D.) for
the relative mean. We can state that in general the results between the means
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are similar and all the standard deviations are low. This means that it is not
possible to appreciate particular differences between the two groups’ reactions.
The only noteworthy items are d5 and a2 that are both related to the feeling
to be proud of their own capacities demonstrated during the learning and the
assessment. Precisely, d5 has a difference of 0.8 in favour of the control group and
a2 0.6 again in favour of the control group. Even though there is no such a big
difference between these means, researchers noticed that during the experiment
Gr1 expended some more efforts watching the videos and interacting with the
CNN software than Gr2 who had only to watch videos and this can affect the
users’ perception of the one’s abilities. Further investigation is needed to explore
this sentiment.

Table 2. Emotional questionnaire results related to the users’ emotions before starting
the learning

Before the learning session
b1 b2 b3 b4 b5 b6

Gr1 mean 4.8 4.4 4.6 4 4 3.5
Gr2 mean 5 3.8 4.4 4 3.8 3.2
difference -0.2 0.6 0.2 0 0.2 0.3
Gr1 S.D. 0.89 0.89 0.45 0.71 0.84 1.64
Gr2 S.D. 0 1.64 0.89 1 1.30 0.84

Table 3. Emotional questionnaire related to the users’ emotions during the learning
session

During the learning session
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

Gr1 mean 4.4 4.7 4.6 4.8 3 4.9 4.9 4.1 4.3 4.5 4.6
Gr2 mean 4.8 5 5 5 3.8 4.8 4.8 4 4.4 4.6 4.6
difference -0.4 -0.3 -0.4 -0.2 -0.8 0.1 0.1 0.1 -0.1 -0.1 0
Gr1 S.D. 1.00 0.55 1.30 0.55 0.45 0.00 0.00 0.84 0.84 0.89 0.55
Gr2 S.D. 0.45 0.00 0.00 0.00 0.84 0.45 0.45 1 0.89 0.55 0.89

Although there are no differences through the test, the study carried out
through facial analysis gives us some more insights. The results obtained through
the facial analysis in terms of valence and engagement are reported below. The
valence is a measure of the positive or negative nature of the recorded person’s
experience: positive, negative, neutral. The engagement is a measure of facial
muscle activation that illustrates the subject’s expressiveness. Each of the fol-
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Table 4. Emotional questionnaire results after the assessment

After the assessment
a1 a2 a3 a4 a4 a6

Gr1 mean 4.2 4 5 4.9 3.3 4.9
Gr2 mean 4.4 4.6 5 5 3.6 5
difference -0.2 -0.6 0 -0.1 -0.3 -0.1
Gr1 S.D. 1.00 1.14 0.00 0.45 1.22 0.45
Gr2 S.D. 0.55 0.55 0.00 0.00 1.67 0.00

lowing pie charts shows the average of the time percentages of the positive,
negative, and neutral valence for Gr1 and Gr2. We can say that by using our
system, the positive value of the participants’ experience is more significant than
that obtained by a group that had to watch the videos.

Fig. 6. Average valence using the our system.
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Fig. 7. Average valence using the traditional system.

Moreover, analyzing the engagement for the two groups, it is possible to see
in 8 that even in this case, the one obtained for the group that used our system
was higher. This means that our system can be considered a more than valid
alternative for learning sign language, as it is much more stimulating for the
user.

Fig. 8. Average percentage of engagement for each group.

This led us to the development of the next section, in which we analyze the
real effectiveness and efficiency of the learning system through a longitudinal
study.
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5 Usability Evaluation
In this section, we present a longitudinal study we performed to measure both
the usability of the software and its effects on the learning efficacy over the time.

5.1 Experiment

The main objective of our experiment was to carry out a study for the learning
of sign language. Each participant used the application performing the gesture of
the 24 letters of the American alphabet. The 12 participants of the experiment
were divided into two groups: 5 participants were tested on the application once
a day, for three days. This made it possible to detect improvements in user
learning. To accomplish that, two different metrics were chosen:

– Accuracy: percentage of gestures performed correctly;
– User satisfaction: the subjective impression of the user (SUS).

We focused on accuracy rates as a basic metric as we can immediately realize
how many errors the user has committed. In addition to empirical data, it is also
important to collect subjective information. As the opinions of users are very
important to define any future developments that can improve our application.
The experiment started with an experimenter explaining the task and the system
to the participants. It was explained to them that the purpose of the experiment
was to test and evaluate this new intelligent sign language learning system, not
their abilities. The participants were asked to replicate the gesture reproduced
by the GIF, trying to simulate it as precisely as possible. The participants were
positioned less than a meter from the computer on which the application was
launched, comfortably seated in an armchair to create as much as possible a
natural environment to be used. At the end of the experiment, the participants
were asked to complete a SUS (System Usability Scale) questionnaire [1]. It
consisted of 10 statements to which the participant assigned a score on a scale
from 1 (strongly discouraged) to 5 (strongly agreed). The final score of the SUS
varies from 0 to 100. A higher score indicates greater usability by the participant.
Furthermore, after the experiment, comments and suggestions were also collected
from the participants. The experiments were evaluated according to the Within-
subject design, i.e., all the subjects participating in the experiment were tested
in each condition (on each letter of the alphabet). The order of the letters to
be executed was counterbalanced among the participants, to avoid problems of
order effects.

5.2 Result

Each experimental session was allocated a 10 minutes time slot. All participants
completed the experiment. To assess the accuracy of the method used for each
participant, we recorded the level of learning achieved. As shown in figure 9 the
participants obtained an accuracy ranging between 17% and 65% (M = 33.9%,
DS = 16.3). The figure refers to the percentage obtained after only one use of
the system by the 12 participants.
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Fig. 9. User learning achievements.

As for the results gained over several days, performed by 5 of the participants,
figure 10 shows how the accuracy increases through the different sessions. This
result was very useful as the basic hypothesis of the experiment was verified,
namely that the system can be used as a support for learning sign language.

Fig. 10. Learning progress through the three experimental sessions.

The average SUS score was 73.7 (SD = 29) for our system. All participants
said that they find our application very stimulating for learning sign language.
The use of the application by the participants was considered a choice that is
always preferable to self-learning through video or other applications, above all
because it is possible to have immediate feedback on one’s level of learning. More-
over, since our application provides feedback for every gesture made, the user
can also see his/her mistakes and become aware of the gesture to be improved.

6 Artificial Intelligence at the Edge
Sign languages are made of sequences of signs. Although, to use regular neural
network for the machine learning of sequential data, as videos (a sequence of
frames), could be possible feeding the CNN with entire sequence, the constraint
of a fixed size of input could be an unacceptable limit. What we need, instead,
is to feed an arbitrary length of images sequence, one element per time step and
a neural network which has some kind of memory to remember events happened
many step times in the past. This behavior is best performed by RNN with
LSTM models. While these kinds of network are successfully used for Sequence
Learning applications, they require extraordinary computational resource. To of-
fer additional computational resources to the locally connected end-user devices,
this paper proposes a Fog-Computing Architecture.
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6.1 The Fog-Computing paradigm

Fog-Computing is an emerging distributed computing model aimed at bringing
computation close to its data sources, which can reduce the latency and cost of
delivering data to a remote cloud. This feature and related advantages have been
profitably exploited in different application scenarios, especially for latency sen-
sitive and mission intensive services [3] [16]. The definition and architecture of
Fog-Computing model [17] are briefly presented in this paper, while it proposes
a new specific hardware platform.

Fog-Node is the core component of Fog- Computing architecture. They are
between the edge of the network, and Cloud resources, distributed on layers,
offering connectivity and computing resources to the smart end-devices (figure
11). The paradigm is that, from Edge to the Cloud, there are layers which
elaborate the data, forwarding the results to the upper layer, and eventually,
collaborate with other Fog-Nodes to distribute the processes “in press” [4] and
storage [21]. Usually, the lower layer offers connectivity to the end-user device
and is part of the local network. Furthermore, the lower layer offers computation
resources and limited storage to locally connected devices, with low latency and
without the need of the Internet connection.

Fig. 11. An exemple of Generic Fog-Computing Architecture.

6.2 The Proposed Framework

In the Deep Neural Network (DNN) models, the large number of identical neu-
rons, makes it natural to consider high parallelism in the computation. Actually,
in 2012, the team led by Alex Krizhevsky, the creator of AlexNet, used for the
first time a Graphics Processing Unit (GPU) -accelerated DNNs, winning the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) by a large mar-
gin [14]. The parallelism naturally fits with GPUs architecture, which provides
significant speed-up over traditional CPU. Currently, an increasing number of
promising devices are available on the market, which claim to bring modern AI
to the makers and to the embedded developers. We selected the new low-cost
NVIDIA Jetson Nano module, which features a 128-core GPU and allows to use
libraries like Python, C++, CUDA X and OpenGL. A wide variety of deep neu-
ral network models that enable tasks like image recognition and object detection
can be accelerated with support from NVIDIA CUDA R© Deep Neural Network
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library (cuDNN) and TensorRT tm. The cuDNN library has support for RNN,
which are widely used for sequence learning in many fields. TensorRT is a plat-
form for high-performance deep learning inference. It contains a deep learning
inference optimizer and a runtime that delivers low latency and high-throughput
for deep learning inference applications. Applications based on TensorRT per-
form up to 40x faster than CPU-only platforms, during inference. The idea is to
optimize trained neural network models and calibrate them for lower precision
with high accuracy on the Cloud data center, and finally deploy the optimized
Inference Engine to the Fog-Node, at the edge of the network (figure 12), de-
ploying there the NVIDIA Jetson Nano module. Smart user devices, which could
not have computational resources to deploy a fast enough inference engine, may
demand the elaboration of image sequences to the locally networked Fog-Node.
The optimized Inference Engine of Fog-Node can then answer with low latency,
and parallelism in the computation, to the end-user device requests. Single Fog-
Node can serve more than one end- user device, and more Fog-Nodes can be
added whenever it needs to scale up for more computational resources.

Fig. 12. Simplified schema of the proposed framework.

7 Conclusions
This paper proposed a simple and interactive learning method and application,
which relies on the potentials of deep learning tools to offer a chance to those
who are inexperienced in Sign Languages for hearing and speech impaired peo-
ple. The method has been initially adopted to develop a system which supports
ASL beginners during alphabet learning tasks and incite them to exercise. The
accuracy of the proposed system has been calculated; the user’s learning curve
has been evaluated and compared against traditional video training. The out-
comes obtained from the tests have produced positive results, indicates that
the solution may not only improve the user’s learning curve but also encour-
age training, due to its efficient methodology. The last is particularly crucial for
self-learning courses, where the absence of a tutor or teacher who encourages the
student to exercise has to be rendered by an attractive and desirables instrument
of learning. Furthermore, in order to apply a similar approach and support to
learning of a complete sign language, we have adopted a new architecture that
may deal with the increased complexities of sign languages, as natural languages
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with their grammar and lexicon. So, to rely on more powerful computational
resources while delivering the final support to learners on their mobile smart
devices, our idea is to bring AI at the Edge, proposing the adoption of a modern
Fog-Computing architecture with low-cost small AI Computer hardware. The
development of the new system is an ongoing activity at our lab, and the next
step of our study will be devoted to benchmarking the user experience of learning
with the proposed solution.
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